Search results
Results From The WOW.Com Content Network
An isothermal process is a type of thermodynamic process in which the temperature T of a system remains constant: ΔT = 0. This typically occurs when a system is in contact with an outside thermal reservoir, and a change in the system occurs slowly enough to allow the system to be continuously adjusted to the temperature of the reservoir through heat exchange (see quasi-equilibrium).
The Rüchardt experiment, [1] [2] [3] invented by Eduard Rüchardt, is a famous experiment in thermodynamics, which determines the ratio of the molar heat capacities of a gas, i.e. the ratio of (heat capacity at constant pressure) and (heat capacity at constant volume) and is denoted by (gamma, for ideal gas) or (kappa, isentropic exponent, for real gas).
The entropy of a given mass does not change during a process that is internally reversible and adiabatic. A process during which the entropy remains constant is called an isentropic process, written Δ s = 0 {\displaystyle \Delta s=0} or s 1 = s 2 {\displaystyle s_{1}=s_{2}} . [ 12 ]
If an infinitesimally small amount of heat is supplied to a system in a reversible way then, according to the second law of thermodynamics, the entropy change of the system is given by: d S = δ Q T {\displaystyle dS={\frac {\delta Q}{T}}\,}
Since an entropy is a state function, the entropy change of the system for an irreversible path is the same as for a reversible path between the same two states. [22] However, the heat transferred to or from the surroundings is different as well as its entropy change. We can calculate the change of entropy only by integrating the above formula.
Owing to these early developments, the typical example of entropy change ΔS is that associated with phase change. In solids, for example, which are typically ordered on the molecular scale, usually have smaller entropy than liquids, and liquids have smaller entropy than gases and colder gases have smaller entropy than hotter gases.
Since the total change in entropy must always be larger or equal to zero, we obtain the inequality W ≤ − Δ F . {\displaystyle W\leq -\Delta F.} We see that the total amount of work that can be extracted in an isothermal process is limited by the free-energy decrease, and that increasing the free energy in a reversible process requires work ...
Whether carried out reversible or irreversibly, the net entropy change of the system is zero, as entropy is a state function. During a closed cycle, the system returns to its original thermodynamic state of temperature and pressure. Process quantities (or path quantities), such as heat and work are process dependent.