Search results
Results From The WOW.Com Content Network
Resonators have also been used to characterize a variety of absorption spectra for the purposes of chemical identification, particularly in the gaseous phase. [24] Another potential application for optical ring resonators are in the form of whispering gallery mode switches.
An optical cavity, resonating cavity or optical resonator is an arrangement of mirrors or other optical elements that confines light waves similarly to how a cavity resonator confines microwaves. Optical cavities are a major component of lasers , surrounding the gain medium and providing feedback of the laser light.
Coupled mode theory (CMT) is a perturbational approach for analyzing the coupling of vibrational systems (mechanical, optical, electrical, etc.) in space or in time. Coupled mode theory allows a wide range of devices and systems to be modeled as one or more coupled resonators.
For fine-tuning one can also change the optical path length of the resonator. In addition, the resonator may contain elements to suppress mode-hops of the resonating wave. This often requires active control of some element of the OPO system. If the nonlinear optical crystal cannot be phase-matched, quasi-phase-matching (QPM) can be
A time-domain reflectometer; an instrument used to locate the position of faults on lines from the time taken for a reflected wave to return from the discontinuity.. A signal travelling along an electrical transmission line will be partly, or wholly, reflected back in the opposite direction when the travelling signal encounters a discontinuity in the characteristic impedance of the line, or if ...
The coherent generation of the frequency comb from a continuous wave laser with the optical nonlinearity as a gain sets Kerr frequency combs apart from today's most common optical frequency combs. These frequency combs are generated by mode-locked lasers where the dominating gain stems from a conventional laser gain medium, which is pumped ...
Each point in the optical phase space corresponds to a unique state of an optical system. For any such system, a plot of the quadratures against each other, possibly as functions of time, is called a phase diagram. If the quadratures are functions of time then the optical phase diagram can show the evolution of a quantum optical system with time.
It is reduced to the above simplified "normal" form by Ikeda, Daido and Akimoto [1] [2] stands for the electric field inside the resonator at the n-th step of rotation in the resonator, and and are parameters which indicate laser light applied from the outside, and linear phase across the resonator, respectively.