Search results
Results From The WOW.Com Content Network
His proofs are similar to Fourier's proof of the irrationality of e. In 1891, Hurwitz explained how it is possible to prove along the same line of ideas that e is not a root of a third-degree polynomial with rational coefficients, which implies that e 3 is irrational. [12] More generally, e q is irrational for any non-zero rational q. [13]
Here is a proof by contradiction that log 2 3 is irrational (log 2 3 ≈ 1.58 > 0). Assume log 2 3 is rational. For some positive integers m and n , we have
Rational numbers have irrationality exponent 1, while (as a consequence of Dirichlet's approximation theorem) every irrational number has irrationality exponent at least 2. On the other hand, an application of Borel-Cantelli lemma shows that almost all numbers, including all algebraic irrational numbers , have an irrationality exponent exactly ...
Template documentation This template's initial visibility currently defaults to autocollapse , meaning that if there is another collapsible item on the page (a navbox, sidebar , or table with the collapsible attribute ), it is hidden apart from its title bar; if not, it is fully visible.
In mathematics, an irrational number is any real number that is not a rational number, i.e., one that cannot be written as a fraction a / b with a and b integers and b not zero. This is also known as being incommensurable, or without common measure. The irrational numbers are precisely those numbers whose expansion in any given base (decimal ...
For instance, take x = 1.5, then x is certainly an upper bound of S, since x is positive and x 2 = 2.25 ≥ 2; that is, no element of S is larger than x. However, we can choose a smaller upper bound, say y = 1.45; this is also an upper bound of S for the same reasons, but it is smaller than x, so x is not a least-upper-bound of S.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
[1] He has reproved Apéry's theorem that ζ(3) is irrational, and expanded it. Zudilin proved that at least one of the four numbers ζ(5), ζ(7), ζ(9), or ζ(11) is irrational. [2] For that accomplishment, he won the Distinguished Award of the Hardy-Ramanujan Society in 2001. [3]