When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Characterizations of the exponential function - Wikipedia

    en.wikipedia.org/wiki/Characterizations_of_the...

    Walter Rudin called it "the most important function in mathematics". [1] It is therefore useful to have multiple ways to define (or characterize) it. Each of the characterizations below may be more or less useful depending on context. The "product limit" characterization of the exponential function was discovered by Leonhard Euler. [2]

  3. Infinity - Wikipedia

    en.wikipedia.org/wiki/Infinity

    [1] [3] For example, if a line is viewed as the set of all of its points, their infinite number (i.e., the cardinality of the line) is larger than the number of integers. [4] In this usage, infinity is a mathematical concept, and infinite mathematical objects can be studied, manipulated, and used just like any other mathematical object.

  4. Central limit theorem - Wikipedia

    en.wikipedia.org/wiki/Central_limit_theorem

    The distribution of ⁠ X 1 + ⋯ + X n / √ n ⁠ need not be approximately normal (in fact, it can be uniform). [38] However, the distribution of c 1 X 1 + ⋯ + c n X n is close to (,) (in the total variation distance) for most vectors (c 1, ..., c n) according to the uniform distribution on the sphere c 2 1 + ⋯ + c 2 n = 1.