Search results
Results From The WOW.Com Content Network
Sample images from MNIST test dataset. The MNIST database (Modified National Institute of Standards and Technology database [1]) is a large database of handwritten digits that is commonly used for training various image processing systems. [2] [3] The database is also widely used for training and testing in the field of machine learning.
RAWPED is a dataset for detection of pedestrians in the context of railways. The dataset is labeled box-wise. 26000 Images Object recognition and classification 2020 [70] [71] Tugce Toprak, Burak Belenlioglu, Burak Aydın, Cuneyt Guzelis, M. Alper Selver OSDaR23 OSDaR23 is a multi-sensory dataset for detection of objects in the context of railways.
The Fashion MNIST dataset is a large freely available database of fashion images that is commonly used for training and testing various machine learning systems. [1] [2] Fashion-MNIST was intended to serve as a replacement for the original MNIST database for benchmarking machine learning algorithms, as it shares the same image size, data format and the structure of training and testing splits.
The datasets are classified, based on the licenses, as Open data and Non-Open data. The datasets from various governmental-bodies are presented in List of open government data sites. The datasets are ported on open data portals. They are made available for searching, depositing and accessing through interfaces like Open API. The datasets are ...
The CLIP models released by OpenAI were trained on a dataset called "WebImageText" (WIT) containing 400 million pairs of images and their corresponding captions scraped from the internet. The total number of words in this dataset is similar in scale to the WebText dataset used for training GPT-2, which contains about 40 gigabytes of text data. [1]
IBM SPSS Modeler is a data mining and text analytics software application from IBM.It is used to build predictive models and conduct other analytic tasks. It has a visual interface which allows users to leverage statistical and data mining algorithms without programming.
The Latent Diffusion Model (LDM) [1] is a diffusion model architecture developed by the CompVis (Computer Vision & Learning) [2] group at LMU Munich. [ 3 ] Introduced in 2015, diffusion models (DMs) are trained with the objective of removing successive applications of noise (commonly Gaussian ) on training images.
In deep learning, fine-tuning is an approach to transfer learning in which the parameters of a pre-trained neural network model are trained on new data. [1] Fine-tuning can be done on the entire neural network, or on only a subset of its layers, in which case the layers that are not being fine-tuned are "frozen" (i.e., not changed during backpropagation). [2]