Search results
Results From The WOW.Com Content Network
Modal dispersion occurs even with an ideal, monochromatic light source. A special case of modal dispersion is polarization mode dispersion (PMD), a fiber dispersion phenomenon usually associated with single-mode fibers. PMD results when two modes that normally travel at the same speed due to fiber core geometric and stress symmetry (for example ...
In fiber-optic communication, an intramodal dispersion, is a category of dispersion that occurs within a single mode optical fiber. [1] This dispersion mechanism is a result of material properties of optical fiber and applies to both single-mode and multi-mode fibers.
Polarization mode dispersion (PMD) is a form of modal dispersion where two different polarizations of light in a waveguide, which normally travel at the same speed, travel at different speeds due to random imperfections and asymmetries, causing random spreading of optical pulses. Unless it is compensated, which is difficult, this ultimately ...
Some dispersion, notably chromatic dispersion, can be removed by a dispersion compensator. This works by using a specially prepared length of fiber that has the opposite dispersion to that induced by the transmission fiber, and this sharpens the pulse so that it can be correctly decoded by the electronics.
Dispersion is the phenomenon in which the phase velocity of a wave depends on its frequency. [1] Sometimes the term chromatic dispersion is used to refer to optics specifically, as opposed to wave propagation in general. A medium having this common property may be termed a dispersive medium.
The parabolic profile results in continual refocusing of the rays in the core, and minimizes modal dispersion. Multi-mode optical fiber can be built with either a graded-index or a step-index profile. The advantage of graded-index multi-mode fiber compared to step-index fiber is a considerable decrease in modal dispersion. This means that the ...
The large modal dispersion inherent to multimode waveguides enables the dispersion per unit length of a chromo-modal dispersion device to be several orders of magnitude higher than that of diffraction grating or dispersion compensating fiber-based dispersive elements.
Other dispersion models that can be used to derive n and k, such as the Tauc–Lorentz model, can be found in the literature. [19] [20] Two well-known models—Cauchy and Sellmeier—provide empirical expressions for n valid over a limited measurement range, and are only useful for non-absorbing films where k=0. Consequently, the Forouhi ...