Ad
related to: diagram of lithosphere
Search results
Results From The WOW.Com Content Network
The tectonic plates of the lithosphere on Earth Earth cutaway from center to surface, the lithosphere comprising the crust and lithospheric mantle (detail not to scale). A lithosphere (from Ancient Greek λίθος (líthos) 'rocky' and σφαίρα (sphaíra) 'sphere') is the rigid, [1] outermost rocky shell of a terrestrial planet or natural satellite.
A diagram of the internal structure of Earth. The lithosphere consists of the crust and upper solid mantle (lithospheric mantle). The green dashed line marks the LAB. The lithosphere–asthenosphere boundary (referred to as the LAB by geophysicists) represents a mechanical difference between layers in Earth's inner structure.
Mechanically, it can be divided into lithosphere, asthenosphere, mesospheric mantle, outer core, and the inner core. Chemically, Earth can be divided into the crust, upper mantle, lower mantle, outer core, and inner core. [6] The geologic component layers of Earth are at increasing depths below the surface. [6]: 146
Plate tectonics (from Latin tectonicus, from Ancient Greek τεκτονικός (tektonikós) 'pertaining to building') [1] is the scientific theory that Earth's lithosphere comprises a number of large tectonic plates, which have been slowly moving since 3–4 billion years ago.
Lithosphere – Outermost shell of a terrestrial-type planet or natural satellite; Ocean – Body of salt water covering most of Earth; Plate tectonics – Movement of Earth's lithosphere List of tectonic plate interactions – Types of plate boundaries; Supercontinent – Landmass comprising more than one continental core, or craton
Plates in the crust of Earth. Earth's crust is its thick outer shell of rock, referring to less than one percent of the planet's radius and volume.It is the top component of the lithosphere, a solidified division of Earth's layers that includes the crust and the upper part of the mantle. [1]
The observed continental drift is a complicated relationship between the forces causing oceanic lithosphere to sink and the movements within Earth's mantle. Although there is a tendency to larger viscosity at greater depth, this relation is far from linear and shows layers with dramatically decreased viscosity, in particular in the upper mantle ...
Beneath the lithosphere is the asthenosphere, a relatively low-viscosity layer on which the lithosphere rides. Important changes in crystal structure within the mantle occur at 410 and 660 km (250 and 410 mi) below the surface, spanning a transition zone that separates the upper and lower mantle.