Search results
Results From The WOW.Com Content Network
Equivalence relations are a ready source of examples or counterexamples. For example, an equivalence relation with exactly two infinite equivalence classes is an easy example of a theory which is ω-categorical, but not categorical for any larger cardinal number.
The cardinality of a set X is essentially a measure of the number of elements of the set. [1] Equinumerosity has the characteristic properties of an equivalence relation (reflexivity, symmetry, and transitivity): [1] Reflexivity Given a set A, the identity function on A is a bijection from A to itself, showing that every set A is equinumerous ...
For example, that every equivalence relation is symmetric, but not necessarily antisymmetric, is indicated by in the "Symmetric" column and in the "Antisymmetric" column, respectively. All definitions tacitly require the homogeneous relation R {\displaystyle R} be transitive : for all a , b , c , {\displaystyle a,b,c,} if a R b {\displaystyle ...
In mathematics, given a category C, a quotient of an object X by an equivalence relation: is a coequalizer for the pair of maps , =,, where R is an object in C and "f is an equivalence relation" means that, for any object T in C, the image (which is a set) of : = (,) () is an equivalence relation; that is, a reflexive, symmetric and transitive relation.
For example, that every equivalence relation is symmetric, but not necessarily antisymmetric, is indicated by in the "Symmetric" column and in the "Antisymmetric" column, respectively. All definitions tacitly require the homogeneous relation R {\displaystyle R} be transitive : for all a , b , c , {\displaystyle a,b,c,} if a R b {\displaystyle ...
Let be the set of ordered pairs of integers (,) with non-zero , and define an equivalence relation on such that (,) (,) if and only if =, then the equivalence class of the pair (,) can be identified with the rational number /, and this equivalence relation and its equivalence classes can be used to give a formal definition of the set of ...
For example: "An even number is an integer which is divisible by 2." An extensional definition instead lists all objects where the term applies. For example: "An even number is any one of the following integers: 0, 2, 4, 6, 8..., -2, -4, -8..." In logic, the extension of a predicate is the set of all things for which the predicate is true. [49]
Another example is given by the divisibility (or "is-a-factor-of") relation |. For two natural numbers n and m, we write n|m if n divides m without remainder. One easily sees that this yields a partial order. For example neither 3 divides 13 nor 13 divides 3, so 3 and 13 are not comparable elements of the divisibility relation on the set of ...