Search results
Results From The WOW.Com Content Network
Their numbers can be arranged into a triangle, the triangle of partition numbers, in which the th row gives the partition numbers (), (), …, (): [1] k n
The function q(n) gives the number of these strict partitions of the given sum n. For example, q(3) = 2 because the partitions 3 and 1 + 2 are strict, while the third partition 1 + 1 + 1 of 3 has repeated parts. The number q(n) is also equal to the number of partitions of n in which only odd summands are permitted. [20]
In number theory and computer science, the partition problem, or number partitioning, [1] is the task of deciding whether a given multiset S of positive integers can be partitioned into two subsets S 1 and S 2 such that the sum of the numbers in S 1 equals the sum of the numbers in S 2.
The partition problem - a special case of multiway number partitioning in which the number of subsets is 2. The 3-partition problem - a different and harder problem, in which the number of subsets is not considered a fixed parameter, but is determined by the input (the number of sets is the number of integers divided by 3).
An r-associated Stirling number of the second kind is the number of ways to partition a set of n objects into k subsets, with each subset containing at least r elements. [17] It is denoted by S r ( n , k ) {\displaystyle S_{r}(n,k)} and obeys the recurrence relation
If there is a remainder in solving a partition problem, the parts will end up with unequal sizes. For example, if 52 cards are dealt out to 5 players, then 3 of the players will receive 10 cards each, and 2 of the players will receive 11 cards each, since 52 5 = 10 + 2 5 {\textstyle {\frac {52}{5}}=10+{\frac {2}{5}}} .
The numbers within the triangle count partitions in which a given element is the largest singleton. The number of partitions of an n-element set into exactly k (non-empty) parts is the Stirling number of the second kind S(n, k). The number of noncrossing partitions of an n-element set is the Catalan number
In combinatorics, the twelvefold way is a systematic classification of 12 related enumerative problems concerning two finite sets, which include the classical problems of counting permutations, combinations, multisets, and partitions either of a set or of a number.