When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Electron mobility - Wikipedia

    en.wikipedia.org/wiki/Electron_mobility

    In solid-state physics, the electron mobility characterises how quickly an electron can move through a metal or semiconductor when pushed or pulled by an electric field. There is an analogous quantity for holes, called hole mobility. The term carrier mobility refers in general to both electron and hole mobility.

  3. Charge transport mechanisms - Wikipedia

    en.wikipedia.org/wiki/Charge_transport_mechanisms

    Generally, the carrier mobility μ depends on temperature T, on the applied electric field E, and the concentration of localized states N. Depending on the model, increased temperature may either increase or decrease carrier mobility, applied electric field can increase mobility by contributing to thermal ionization of trapped charges, and ...

  4. Carrier generation and recombination - Wikipedia

    en.wikipedia.org/wiki/Carrier_generation_and...

    In solid-state physics of semiconductors, carrier generation and carrier recombination are processes by which mobile charge carriers (electrons and electron holes) are created and eliminated. Carrier generation and recombination processes are fundamental to the operation of many optoelectronic semiconductor devices , such as photodiodes , light ...

  5. Monte Carlo methods for electron transport - Wikipedia

    en.wikipedia.org/wiki/Monte_Carlo_methods_for...

    The Monte Carlo method for electron transport is a semiclassical Monte Carlo (MC) approach of modeling semiconductor transport. Assuming the carrier motion consists of free flights interrupted by scattering mechanisms, a computer is utilized to simulate the trajectories of particles as they move across the device under the influence of an electric field using classical mechanics.

  6. Saturation velocity - Wikipedia

    en.wikipedia.org/wiki/Saturation_velocity

    The proportionality constant is known as mobility of the carrier, which is a material property. A good conductor would have a high mobility value for its charge carrier, which means higher velocity, and consequently higher current values for a given electric field strength. There is a limit though to this process and at some high field value, a ...

  7. Charge carrier - Wikipedia

    en.wikipedia.org/wiki/Charge_carrier

    Free carrier concentration is the concentration of free carriers in a doped semiconductor. It is similar to the carrier concentration in a metal and for the purposes of calculating currents or drift velocities can be used in the same way. Free carriers are electrons that have been introduced into the conduction band (valence band) by doping ...

  8. Charge carrier density - Wikipedia

    en.wikipedia.org/wiki/Charge_carrier_density

    For example, doping pure silicon with a small amount of phosphorus will increase the carrier density of electrons, n. Then, since n > p, the doped silicon will be a n-type extrinsic semiconductor. Doping pure silicon with a small amount of boron will increase the carrier density of holes, so then p > n, and it will be a p-type extrinsic ...

  9. Magnetoresistance - Wikipedia

    en.wikipedia.org/wiki/Magnetoresistance

    In a semiconductor with a single carrier type, the magnetoresistance is proportional to (1 + (μB) 2), where μ is the semiconductor mobility (units m 2 ·V −1 ·s −1, equivalently m 2 ·Wb −1, or T −1) and B is the magnetic field (units teslas).