Search results
Results From The WOW.Com Content Network
Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.
Informally, the second derivative can be phrased as "the rate of change of the rate of change"; for example, the second derivative of the position of an object with respect to time is the instantaneous acceleration of the object, or the rate at which the velocity of the object is changing with respect to
As a vector, jerk j can be expressed as the first time derivative of acceleration, second time derivative of velocity, and third time derivative of position: = = = ()Where:
Consequently, the acceleration is the second derivative of position, [7] often written . Position, when thought of as a displacement from an origin point, is a vector: a quantity with both magnitude and direction. [9]: 1 Velocity and acceleration are vector quantities as well. The mathematical tools of vector algebra provide the means to ...
As acceleration is defined as the derivative of velocity, v, with respect to time t and velocity is defined as the derivative of position, x, with respect to time, acceleration can be thought of as the second derivative of x with respect to t: = =.
Stated formally, in general, an equation of motion M is a function of the position r of the object, its velocity (the first time derivative of r, v = dr / dt ), and its acceleration (the second derivative of r, a = d 2 r / dt 2 ), and time t.
For example, for a changing position, its time derivative ˙ is its velocity, and its second derivative with respect to time, ¨, is its acceleration. Even higher derivatives are sometimes also used: the third derivative of position with respect to time is known as the jerk. See motion graphs and derivatives. A large number of fundamental ...
Since acceleration differentiates the expression involving position, it can be rewritten as a second derivative with respect to time: a = d 2 s d t 2 . {\displaystyle a={\frac {d^{2}s}{dt^{2}}}.} Since, for the purposes of mechanics such as this, integration is the opposite of differentiation, it is also possible to express position as a ...