Search results
Results From The WOW.Com Content Network
The trilinear coordinates of the incenter of a triangle ABC are 1 : 1 : 1; that is, the (directed) distances from the incenter to the sidelines BC, CA, AB are proportional to the actual distances denoted by (r, r, r), where r is the inradius of ABC. Given side lengths a, b, c we have:
A triangle is a polygon with three corners and three sides, one of the basic shapes in geometry.The corners, also called vertices, are zero-dimensional points while the sides connecting them, also called edges, are one-dimensional line segments.
If vertex A is located at the origin (0, 0) of a Cartesian coordinate system and the coordinates of the other two vertices are given by B = (x B, y B) and C = (x C, y C), then the area can be computed as 1 ⁄ 2 times the absolute value of the determinant
Let a triangle be given with vertices A, B, and C, opposite sides of lengths a, b, and c, area K, and a line that is tangent to the triangle's incircle at any point on that circle. Denote the signed perpendicular distances of the vertices from the line as a ', b ', and c ', with a distance being negative if and only if the vertex is on the ...
The Cartesian coordinates of the incenter are a weighted average of the coordinates of the three vertices using the side lengths of the triangle relative to the perimeter—i.e., using the barycentric coordinates given above, normalized to sum to unity—as weights. (The weights are positive so the incenter lies inside the triangle as stated ...
The Cartesian coordinates of the incenter are a weighted average of the coordinates of the three vertices using the side lengths of the triangle relative to the perimeter (that is, using the barycentric coordinates given above, normalized to sum to unity) as weights. The weights are positive so the incenter lies inside the triangle as stated above.
If a non-zero f has both these properties it is called a triangle center function. If f is a triangle center function and a, b, c are the side-lengths of a reference triangle then the point whose trilinear coordinates are f(a,b,c) : f(b,c,a) : f(c,a,b) is called a triangle center.
A point in the interior of a triangle is the center of an inellipse of the triangle if and only if the point lies in the interior of the triangle whose vertices lie at the midpoints of the original triangle's sides. [3]: p.139 For a given point inside that medial triangle, the inellipse with its center at that point is unique. [3]: p.142