Search results
Results From The WOW.Com Content Network
A zero-crossing is a point where the sign of a mathematical function changes (e.g. from positive to negative), represented by an intercept of the axis (zero value) in the graph of the function. It is a commonly used term in electronics, mathematics, acoustics , and image processing .
Then, zero crossings are detected in the filtered result to obtain the edges. The Laplacian-of-Gaussian image operator is sometimes also referred to as the Mexican hat wavelet due to its visual shape when turned upside-down. David Marr and Ellen C. Hildreth are two of the inventors. [2]
Find a topological ordering of the given DAG. For each vertex v of the DAG, in the topological ordering, compute the length of the longest path ending at v by looking at its incoming neighbors and adding one to the maximum length recorded for those neighbors. If v has no incoming neighbors, set the length of the longest path ending at v to zero ...
Crossing Numbers of Graphs is a book in mathematics, on the minimum number of edge crossings needed in graph drawings. It was written by Marcus Schaefer, a professor of computer science at DePaul University , and published in 2018 by the CRC Press in their book series Discrete Mathematics and its Applications.
It is the conditional probability distribution of a Poisson-distributed random variable, given that the value of the random variable is not zero. Thus it is impossible for a ZTP random variable to be zero. Consider for example the random variable of the number of items in a shopper's basket at a supermarket checkout line.
A drawing of the Heawood graph with three crossings. This is the minimum number of crossings among all drawings of this graph, so the graph has crossing number cr(G) = 3.. In graph theory, the crossing number cr(G) of a graph G is the lowest number of edge crossings of a plane drawing of the graph G.
A variational explanation for the main ingredient of the Canny edge detector, that is, finding the zero crossings of the 2nd derivative along the gradient direction, was shown to be the result of minimizing a Kronrod–Minkowski functional while maximizing the integral over the alignment of the edge with the gradient field (Kimmel and ...
An end-point is an inflection point where the second derivative of the function is zero. [9] The titration curve for malonic acid illustrates the power of the method. The first end-point at 4 ml is barely visible, but the second derivative allows its value to be easily determined by linear interpolation to find the zero crossing. Baseline ...