When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Identity matrix - Wikipedia

    en.wikipedia.org/wiki/Identity_matrix

    In linear algebra, the identity matrix of size is the square matrix with ones on the main diagonal and zeros elsewhere. It has unique properties, for example when the identity matrix represents a geometric transformation, the object remains unchanged by the transformation. In other contexts, it is analogous to multiplying by the number 1.

  3. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    The identity matrix I n of size n is the n-by-n matrix in which all the elements on the main diagonal are equal to 1 and all other elements are equal to 0, for example, = [], = [], = [] It is a square matrix of order n, and also a special kind of diagonal matrix. It is called an identity matrix because multiplication with it leaves a matrix ...

  4. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    To compute a matrix inverse using this method, an augmented matrix is first created with the left side being the matrix to invert and the right side being the identity matrix. Then, Gaussian elimination is used to convert the left side into the identity matrix, which causes the right side to become the inverse of the input matrix.

  5. Matrix exponential - Wikipedia

    en.wikipedia.org/wiki/Matrix_exponential

    We denote the n×n identity matrix by I and the zero matrix by 0. The matrix exponential satisfies the following properties. [2] We begin with the properties that are immediate consequences of the definition as a power series: e 0 = I; exp(X T) = (exp X) T, where X T denotes the transpose of X. exp(X ∗) = (exp X) ∗, where X ∗ denotes the ...

  6. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    For such a matrix, using the linearity in each column reduces to the identity matrix, in which case the stated formula holds by the very first characterizing property of determinants. Alternatively, this formula can also be deduced from the Leibniz formula, since the only permutation σ {\displaystyle \sigma } which gives a non-zero ...

  7. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    In other words, the matrix of the combined transformation A followed by B is simply the product of the individual matrices. When A is an invertible matrix there is a matrix A −1 that represents a transformation that "undoes" A since its composition with A is the identity matrix. In some practical applications, inversion can be computed using ...

  8. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    Assuming this result, we can deduce the following properties: Counting multiplicities, the eigenvalues of J, and therefore of A, are the diagonal entries. Given an eigenvalue λ i, its geometric multiplicity is the dimension of ker(A − λ i I), where I is the identity matrix, and it is the number of Jordan blocks corresponding to λ i. [12]

  9. Jacobi's formula - Wikipedia

    en.wikipedia.org/wiki/Jacobi's_formula

    Lemma 1. ′ =, where ′ is the differential of . This equation means that the differential of , evaluated at the identity matrix, is equal to the trace.The differential ′ is a linear operator that maps an n × n matrix to a real number.