Search results
Results From The WOW.Com Content Network
Donnan equilibrium across a cell membrane (schematic). The Gibbs–Donnan effect (also known as the Donnan's effect, Donnan law, Donnan equilibrium, or Gibbs–Donnan equilibrium) is a name for the behaviour of charged particles near a semi-permeable membrane that sometimes fail to distribute evenly across the two sides of the membrane. [1]
Dispersion is a process by which (in the case of solid dispersing in a liquid) agglomerated particles are separated from each other, and a new interface between the inner surface of the liquid dispersion medium and the surface of the dispersed particles is generated. This process is facilitated by molecular diffusion and convection. [4]
As the two atoms get closer and closer, the positively charged nuclei repel, creating a force that attempts to push the atoms apart. As the two atoms get further apart, attractive forces work to pull them back together. Thus an equilibrium bond length is achieved and is a good measure of bond stability.
Sedimentation equilibrium in a suspension of different particles, such as molecules, exists when the rate of transport of each material in any one direction due to sedimentation equals the rate of transport in the opposite direction due to diffusion. Sedimentation is due to an external force, such as gravity or centrifugal force in a centrifuge.
This distribution is used for describing systems in equilibrium. However, most systems do not start out in their equilibrium state. The evolution of a system towards its equilibrium state is governed by the Boltzmann equation. The equation predicts that for short range interactions, the equilibrium velocity distribution will follow a Maxwell ...
If a dynamic equilibrium is disturbed by changing the conditions, the position of equilibrium moves to partially reverse the change. For example, adding more S (to the chemical reaction above) from the outside will cause an excess of products, and the system will try to counteract this by increasing the reverse reaction and pushing the ...
The convection–diffusion equation can be derived in a straightforward way [4] from the continuity equation, which states that the rate of change for a scalar quantity in a differential control volume is given by flow and diffusion into and out of that part of the system along with any generation or consumption inside the control volume: + =, where j is the total flux and R is a net ...
Temperature affects not only the viscosity, but also interfacial tension in the case of non-ionic surfactants or more generally interaction forces inside the system. Storing a dispersion at high temperatures may accelerate some instability processes. Mechanical acceleration, including vibration, centrifugation, and agitation, can also be used.