When.com Web Search

  1. Ads

    related to: prove that 11 is irrational worksheet examples 3rd grade sentences

Search results

  1. Results From The WOW.Com Content Network
  2. Irrational number - Wikipedia

    en.wikipedia.org/wiki/Irrational_number

    Examples are e r and π r, which are transcendental for all nonzero rational r. Because the algebraic numbers form a subfield of the real numbers, many irrational real numbers can be constructed by combining transcendental and algebraic numbers. For example, 3 π + 2, π + √ 2 and e √ 3 are irrational (and even transcendental).

  3. Proof that e is irrational - Wikipedia

    en.wikipedia.org/wiki/Proof_that_e_is_irrational

    His proofs are similar to Fourier's proof of the irrationality of e. In 1891, Hurwitz explained how it is possible to prove along the same line of ideas that e is not a root of a third-degree polynomial with rational coefficients, which implies that e 3 is irrational. [12] More generally, e q is irrational for any non-zero rational q. [13]

  4. Category:Irrational numbers - Wikipedia

    en.wikipedia.org/wiki/Category:Irrational_numbers

    In mathematics, an irrational number is any real number that is not a rational number, i.e., one that cannot be written as a fraction a / b with a and b integers and b not zero. This is also known as being incommensurable, or without common measure. The irrational numbers are precisely those numbers whose expansion in any given base (decimal ...

  5. Dedekind cut - Wikipedia

    en.wikipedia.org/wiki/Dedekind_cut

    Otherwise, that cut defines a unique irrational number which, loosely speaking, fills the "gap" between A and B. [3] In other words, A contains every rational number less than the cut, and B contains every rational number greater than or equal to the cut. An irrational cut is equated to an irrational number which is in neither set.

  6. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    The following famous example of a nonconstructive proof shows that there exist two irrational numbers a and b such that is a rational number. This proof uses that 2 {\displaystyle {\sqrt {2}}} is irrational (an easy proof is known since Euclid ), but not that 2 2 {\displaystyle {\sqrt {2}}^{\sqrt {2}}} is irrational (this is true, but the proof ...

  7. Irrationality measure - Wikipedia

    en.wikipedia.org/wiki/Irrationality_measure

    Rational numbers have irrationality exponent 1, while (as a consequence of Dirichlet's approximation theorem) every irrational number has irrationality exponent at least 2. On the other hand, an application of Borel-Cantelli lemma shows that almost all numbers, including all algebraic irrational numbers , have an irrationality exponent exactly ...

  8. Real number - Wikipedia

    en.wikipedia.org/wiki/Real_number

    In particular, the test that a sequence is a Cauchy sequence allows proving that a sequence has a limit, without computing it, and even without knowing it. For example, the standard series of the exponential function = =! converges to a real number for every x, because the sums

  9. Mathematical induction - Wikipedia

    en.wikipedia.org/wiki/Mathematical_induction

    Mathematical induction can be informally illustrated by reference to the sequential effect of falling dominoes. [1] [2]Mathematical induction is a method for proving that a statement () is true for every natural number, that is, that the infinitely many cases (), (), (), (), … all hold.