Ad
related to: protosolar nebula star destroyer 3d model
Search results
Results From The WOW.Com Content Network
The widely accepted modern variant of the nebular theory is the solar nebular disk model (SNDM) or solar nebular model. [1] It offered explanations for a variety of properties of the Solar System, including the nearly circular and coplanar orbits of the planets, and their motion in the same direction as the Sun's rotation.
This will cause the outer layers of the star to expand greatly, and the star will enter a phase of its life in which it is called a red giant. [121] [122] Within 7.5 billion years, the Sun will have expanded to a radius of 1.2 AU (180 × 10 ^ 6 km; 110 × 10 ^ 6 mi)—256 times its current size.
A protoplanetary nebula or preplanetary nebula [1] (PPN, plural PPNe) is an astronomical object which is at the short-lived episode during a star's rapid evolution between the late asymptotic giant branch (LAGB) phase and the subsequent planetary nebula (PN) phase. A PPN emits strongly in infrared radiation, and is a kind of reflection nebula.
In astronomy or planetary science, the frost line, also known as the snow line or ice line, is the minimum distance from the central protostar of a solar nebula where the temperature is low enough for volatile compounds such as water, ammonia, methane, carbon dioxide and carbon monoxide to condense into solid grains, which will allow their accretion into planetesimals.
NGC 2359 (also known as Thor's Helmet) is an emission nebula [3] in the constellation Canis Major. The nebula is approximately 3,670 parsecs (11.96 thousand light years) away and 30 light-years in size. The central star is the Wolf-Rayet star WR7, an extremely hot star thought to be in a brief pre-supernova stage of evolution.
The nebula was imaged by the Hubble Space Telescope in the 1990s. The primary component of the central binary is the hot core of a star that reached the end of its main-sequence life cycle, ejected most of its outer layers and became a red giant, and is now contracting into a white dwarf. It is believed to have been a sun-like star early in its ...
A star forms by accumulation of material that falls in to a protostar from a circumstellar disk or envelope. Material in the disk is cooler than the surface of the protostar, so it radiates at longer wavelengths of light producing excess infrared emission. As material in the disk is depleted, the infrared excess decreases.
A protoplanetary disk is a rotating circumstellar disc of dense gas and dust surrounding a young newly formed star, a T Tauri star, or Herbig Ae/Be star. The protoplanetary disk may not be considered an accretion disk; while the two are similar, an accretion disk is hotter and spins much faster. It is also found on black holes, not stars. This ...