When.com Web Search

  1. Ad

    related to: ant colony optimization flow chart example

Search results

  1. Results From The WOW.Com Content Network
  2. Ant colony optimization algorithms - Wikipedia

    en.wikipedia.org/wiki/Ant_colony_optimization...

    In the ant colony optimization algorithms, an artificial ant is a simple computational agent that searches for good solutions to a given optimization problem. To apply an ant colony algorithm, the optimization problem needs to be converted into the problem of finding the shortest path on a weighted graph. In the first step of each iteration ...

  3. Humanoid ant algorithm - Wikipedia

    en.wikipedia.org/wiki/Humanoid_Ant_algorithm

    The humanoid ant algorithm (HUMANT) [1] is an ant colony optimization algorithm. The algorithm is based on a priori approach to multi-objective optimization (MOO), which means that it integrates decision-makers preferences into optimization process. [2] Using decision-makers preferences, it actually turns multi-objective problem into single ...

  4. Genetic algorithm - Wikipedia

    en.wikipedia.org/wiki/Genetic_algorithm

    Ant colony optimization (ACO) uses many ants (or agents) equipped with a pheromone model to traverse the solution space and find locally productive areas. Although considered an Estimation of distribution algorithm , [ 64 ] Particle swarm optimization (PSO) is a computational method for multi-parameter optimization which also uses population ...

  5. Artificial bee colony algorithm - Wikipedia

    en.wikipedia.org/wiki/Artificial_Bee_Colony...

    Artificial bee colony (ABC) algorithm is an optimization technique that simulates the foraging behavior of honey bees, and has been successfully applied to various practical problems [citation needed]. ABC belongs to the group of swarm intelligence algorithms and was proposed by Karaboga in 2005.

  6. Metaheuristic - Wikipedia

    en.wikipedia.org/wiki/Metaheuristic

    In computer science and mathematical optimization, a metaheuristic is a higher-level procedure or heuristic designed to find, generate, tune, or select a heuristic (partial search algorithm) that may provide a sufficiently good solution to an optimization problem or a machine learning problem, especially with incomplete or imperfect information or limited computation capacity.

  7. Task allocation and partitioning in social insects - Wikipedia

    en.wikipedia.org/wiki/Task_allocation_and...

    Task allocation and partitioning is the way that tasks are chosen, assigned, subdivided, and coordinated within a colony of social insects. Task allocation and partitioning gives rise to the division of labor often observed in social insect colonies, whereby individuals specialize on different tasks within the colony (e.g., "foragers", "nurses").

  8. Simulated annealing - Wikipedia

    en.wikipedia.org/wiki/Simulated_annealing

    Stochastic optimization is an umbrella set of methods that includes simulated annealing and numerous other approaches. Particle swarm optimization is an algorithm modeled on swarm intelligence that finds a solution to an optimization problem in a search space, or models and predicts social behavior in the presence of objectives.

  9. Swarm intelligence - Wikipedia

    en.wikipedia.org/wiki/Swarm_intelligence

    Ant colony optimization (ACO), introduced by Dorigo in his doctoral dissertation, is a class of optimization algorithms modeled on the actions of an ant colony. ACO is a probabilistic technique useful in problems that deal with finding better paths through graphs.