Search results
Results From The WOW.Com Content Network
3.5 cm – width of film commonly used in motion pictures and still photography; 3.78 cm – amount of distance the Moon moves away from Earth each year [113] 4.3 cm – minimum diameter of a golf ball [114] 5 cm – usual diameter of a chicken egg; 5 cm – height of a hummingbird, the smallest-known bird; 5.08 cm – 2 inches,
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal n̂, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
The source free equations can be written by the action of the exterior derivative on this 2-form. But for the equations with source terms (Gauss's law and the Ampère-Maxwell equation), the Hodge dual of this 2-form is needed. The Hodge star operator takes a p-form to a (n − p)-form, where n is the number of dimensions.
Diagram regarding the confirmation of gravitomagnetism by Gravity Probe B. Gravitoelectromagnetism, abbreviated GEM, refers to a set of formal analogies between the equations for electromagnetism and relativistic gravitation; specifically: between Maxwell's field equations and an approximation, valid under certain conditions, to the Einstein field equations for general relativity.
It is also possible to compute the maximum stagnation point convective heating with the Allen-Eggers solution and a heat transfer correlation; the Sutton-Graves correlation [3] is commonly chosen. The heat rate q ˙ ″ {\displaystyle {\dot {q}}''} at the stagnation point, with units of Watts per square meter, is assumed to have the form:
In electromagnetism, Jefimenko's equations (named after Oleg D. Jefimenko) give the electric field and magnetic field due to a distribution of electric charges and electric current in space, that takes into account the propagation delay (retarded time) of the fields due to the finite speed of light and relativistic effects.
The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation .
By considering the cases of axioms 1 and 2 in which the multiset X has two elements and the case of axiom 3 in which the multisets X, Y, and Z have one element each, one recovers the usual axioms for a metric. That is, every multiset metric yields an ordinary metric when restricted to sets of two elements.