When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bayesian linear regression - Wikipedia

    en.wikipedia.org/wiki/Bayesian_linear_regression

    Bayesian linear regression is a type of conditional modeling in which the mean of one variable is described by a linear combination of other variables, with the goal of obtaining the posterior probability of the regression coefficients (as well as other parameters describing the distribution of the regressand) and ultimately allowing the out-of-sample prediction of the regressand (often ...

  3. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    In linear regression, the model specification is that the dependent variable, is a linear combination of the parameters (but need not be linear in the independent variables). For example, in simple linear regression for modeling n {\displaystyle n} data points there is one independent variable: x i {\displaystyle x_{i}} , and two parameters, β ...

  4. Bayesian multivariate linear regression - Wikipedia

    en.wikipedia.org/wiki/Bayesian_multivariate...

    In statistics, Bayesian multivariate linear regression is a Bayesian approach to multivariate linear regression, i.e. linear regression where the predicted outcome is a vector of correlated random variables rather than a single scalar random variable.

  5. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    Bayesian linear regression can also be used, which by its nature is more or less immune to the problem of overfitting. (In fact, ridge regression and lasso regression can both be viewed as special cases of Bayesian linear regression, with particular types of prior distributions placed on the regression coefficients.)

  6. Bayes linear statistics - Wikipedia

    en.wikipedia.org/wiki/Bayes_linear_statistics

    Bayes linear statistics is a subjectivist statistical methodology and framework. Traditional subjective Bayesian analysis is based upon fully specified probability distributions, which are very difficult to specify at the necessary level of detail. Bayes linear analysis attempts to solve this problem by developing theory and practise for using ...

  7. Ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Ordinary_least_squares

    In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one [clarification needed] effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values ...

  8. Maximum a posteriori estimation - Wikipedia

    en.wikipedia.org/wiki/Maximum_a_posteriori...

    An estimation procedure that is often claimed to be part of Bayesian statistics is the maximum a posteriori (MAP) estimate of an unknown quantity, that equals the mode of the posterior density with respect to some reference measure, typically the Lebesgue measure.

  9. Spike-and-slab regression - Wikipedia

    en.wikipedia.org/wiki/Spike-and-slab_regression

    A draw of γ from its prior distribution is a list of the variables included in the regression. Conditional on this set of selected variables, we take a draw from the prior distribution of the regression coefficients (if γ i = 1 then β i ≠ 0 and if γ i = 0 then β i = 0). βγ denotes the subset of β for which γ i = 1.