Search results
Results From The WOW.Com Content Network
It is composed of three main components: microfilaments, intermediate filaments, and microtubules, and these are all capable of rapid growth and or disassembly depending on the cell's requirements. [3] A multitude of functions can be performed by the cytoskeleton.
The anti-parallel orientation of tetramers means that, unlike microtubules and microfilaments, which have a plus end and a minus end, IFs lack polarity and cannot serve as basis for cell motility and intracellular transport. Also, unlike actin or tubulin, intermediate filaments do not contain a binding site for a nucleoside triphosphate.
Microtubules play an important role in a number of cellular processes. They are involved in maintaining the structure of the cell and, together with microfilaments and intermediate filaments, they form the cytoskeleton. They also make up the internal structure of cilia and flagella.
Intermediate filaments are composed of several proteins unlike microfilaments and microtubules which are composed of primarily actin and tubulin. These proteins have been classified into 6 major categories based on their similar characteristics. Type 1 and 2 intermediate filaments are those that are composed of keratins, and they are mainly ...
Microfilaments, also called actin filaments, are protein filaments in the cytoplasm of eukaryotic cells that form part of the cytoskeleton. They are primarily composed of polymers of actin , but are modified by and interact with numerous other proteins in the cell.
The eukaryotic cytoskeleton is composed of microtubules, intermediate filaments and microfilaments. In the cytoskeleton of a neuron the intermediate filaments are known as neurofilaments. There are a great number of proteins associated with them, each controlling a cell's structure by directing, bundling, and aligning filaments. [2]
While cellular processes can be supported by any of the three major components of the cytoskeleton—microfilaments (actin filaments), intermediate filaments (IFs), or microtubules—, lamellipodia are primarily driven by the polymerization of actin microfilaments, not microtubules. [3] [20]
Microtubules are assembled from dimers of α- and β-tubulin. These subunits are slightly acidic, with an isoelectric point between 5.2 and 5.8. [14] Each has a molecular weight of approximately 50 kDa. [15] To form microtubules, the dimers of α- and β-tubulin bind to GTP and assemble onto the (+) ends of microtubules while in the GTP-bound ...