Search results
Results From The WOW.Com Content Network
6 H 2 O + 6 CO 2 + energy → C 6 H 12 O 6 + 6 O 2 where C 6 H 12 O 6 is glucose (which is subsequently transformed into other sugars , starches , cellulose , lignin , and so forth). The value of the photosynthetic efficiency is dependent on how light energy is defined – it depends on whether we count only the light that is absorbed, and on ...
Due to the presence of chlorophyll a, as opposed to bacteriochlorophyll, Photosystem II absorbs light at a shorter wavelength. The pair of chlorophyll molecules at the reaction center are often referred to as P680. [1] When the photon has been absorbed, the resulting high-energy electron is transferred to a nearby pheophytin molecule.
The formula provided a reliable method of measuring chlorophyll content from 41 mg m −2 up to 675 mg m −2 with a correlation r 2 value of 0.95. [ 28 ] Also, the chlorophyll concentration can be estimated by measuring the light transmittance through the plant leaves [ 29 ] .
The light-harvesting system of PSI uses multiple copies of the same transmembrane proteins used by PSII. The energy of absorbed light (in the form of delocalized, high-energy electrons) is funneled into the reaction center, where it excites special chlorophyll molecules (P700, with maximum light absorption at 700 nm) to a higher energy level.
Chlorophyll a in the reaction center is the only pigment to pass boosted electrons to an acceptor (modified from 2). Absorption of light by photosynthetic pigments converts photons into chemical energy. Light energy radiating onto the chloroplast strikes the pigments in the thylakoid membrane and excites their
The light-harvesting complex (or antenna complex; LH or LHC) is an array of protein and chlorophyll molecules embedded in the thylakoid membrane of plants and cyanobacteria, which transfer light energy to one chlorophyll a molecule at the reaction center of a photosystem. The antenna pigments are predominantly chlorophyll b, xanthophylls, and ...
Photosystem I [1] is an integral membrane protein complex that uses light energy to catalyze the transfer of electrons across the thylakoid membrane from plastocyanin to ferredoxin. Ultimately, the electrons that are transferred by Photosystem I are used to produce the moderate-energy hydrogen carrier NADPH . [ 2 ]
The pigments which absorb light at the highest energy level are found furthest from the reaction center. On the other hand, the pigments with the lowest energy level are more closely associated with the reaction center. Energy will be efficiently transferred from the outer part of the antenna complex to the inner part.