Search results
Results From The WOW.Com Content Network
If p is a probability, then p/(1 − p) is the corresponding odds; the logit of the probability is the logarithm of the odds, i.e.: = = = = (). The base of the logarithm function used is of little importance in the present article, as long as it is greater than 1, but the natural logarithm with base e is the one most often used.
In probability theory and computer science, a log probability is simply a logarithm of a probability. [1] The use of log probabilities means representing probabilities on a logarithmic scale ( − ∞ , 0 ] {\displaystyle (-\infty ,0]} , instead of the standard [ 0 , 1 ] {\displaystyle [0,1]} unit interval .
In probability and statistics, the log-logistic distribution (known as the Fisk distribution in economics) is a continuous probability distribution for a non-negative random variable. It is used in survival analysis as a parametric model for events whose rate increases initially and decreases later, as, for example, mortality rate from cancer ...
In probability theory and statistics, the logistic distribution is a continuous probability distribution. Its cumulative distribution function is the logistic function, which appears in logistic regression and feedforward neural networks. It resembles the normal distribution in shape but has heavier tails (higher kurtosis).
The curve shows the estimated probability of passing an exam (binary dependent variable) versus hours studying (scalar independent variable). See § Example for worked details. In statistics, the logistic model (or logit model) is a statistical model that models the log-odds of an event as a linear combination of one or more independent variables.
In particular, in the multinomial logit model, the score can directly be converted to a probability value, indicating the probability of observation i choosing outcome k given the measured characteristics of the observation. This provides a principled way of incorporating the prediction of a particular multinomial logit model into a larger ...
In probability theory, a logit-normal distribution is a probability distribution of a random variable whose logit has a normal distribution.If Y is a random variable with a normal distribution, and t is the standard logistic function, then X = t(Y) has a logit-normal distribution; likewise, if X is logit-normally distributed, then Y = logit(X)= log (X/(1-X)) is normally distributed.
The fact that the log-t distribution has infinite mean is a problem when using it to value options, but there are techniques to overcome that limitation, such as by truncating the probability density function at some arbitrary large value. [6] [7] [8] The log-t distribution also has applications in hydrology and in analyzing data on cancer ...