When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Spherical conic - Wikipedia

    en.wikipedia.org/wiki/Spherical_conic

    In mathematics, a spherical conic or sphero-conic is a curve on the sphere, the intersection of the sphere with a concentric elliptic cone. It is the spherical analog of a conic section ( ellipse , parabola , or hyperbola ) in the plane, and as in the planar case, a spherical conic can be defined as the locus of points the sum or difference of ...

  3. Conical coordinates - Wikipedia

    en.wikipedia.org/wiki/Conical_coordinates

    Coordinate surfaces of the conical coordinates. The constants b and c were chosen as 1 and 2, respectively. The red sphere represents r = 2, the blue elliptic cone aligned with the vertical z-axis represents μ=cosh(1) and the yellow elliptic cone aligned with the (green) x-axis corresponds to ν 2 = 2/3.

  4. Spherical cone - Wikipedia

    en.wikipedia.org/wiki/Spherical_cone

    Print/export Download as PDF; Printable version; In other projects Wikidata item; Appearance. ... Spherical conic This page was last edited on 24 ...

  5. Category:Conic sections - Wikipedia

    en.wikipedia.org/wiki/Category:Conic_sections

    Download as PDF; Printable version; In other projects ... Pages in category "Conic sections" ... Spherical conic;

  6. Spherical sector - Wikipedia

    en.wikipedia.org/wiki/Spherical_sector

    In geometry, a spherical sector, [1] also known as a spherical cone, [2] is a portion of a sphere or of a ball defined by a conical boundary with apex at the center of the sphere. It can be described as the union of a spherical cap and the cone formed by the center of the sphere and the base of the cap.

  7. Hypercone - Wikipedia

    en.wikipedia.org/wiki/Hypercone

    In geometry, a hypercone (or spherical cone) is the figure in the 4-dimensional Euclidean space represented by the equation x 2 + y 2 + z 2 − w 2 = 0. {\displaystyle x^{2}+y^{2}+z^{2}-w^{2}=0.} It is a quadric surface, and is one of the possible 3- manifolds which are 4-dimensional equivalents of the conical surface in 3 dimensions.

  8. Menaechmus - Wikipedia

    en.wikipedia.org/wiki/Menaechmus

    Menaechmus (Greek: Μέναιχμος, c. 380 – c. 320 BC) was an ancient Greek mathematician, geometer and philosopher [1] born in Alopeconnesus or Prokonnesos in the Thracian Chersonese, who was known for his friendship with the renowned philosopher Plato and for his apparent discovery of conic sections and his solution to the then-long-standing problem of doubling the cube using the ...

  9. Albers projection - Wikipedia

    en.wikipedia.org/wiki/Albers_projection

    Snyder [6] describes generating formulae for the projection, as well as the projection's characteristics. Coordinates from a spherical datum can be transformed into Albers equal-area conic projection coordinates with the following formulas, where is the radius, is the longitude, the reference longitude, the latitude, the reference latitude and and the standard parallels: