Search results
Results From The WOW.Com Content Network
The outer red layer in this diagram is the capsule, which is distinct from the cell envelope. This bacterium is gram-positive, as its cell envelope comprises a single cell membrane (orange) and a thick peptidoglycan-containing cell wall (purple). The bacterial capsule is a large structure common to many bacteria. [1]
The bacterial cell wall differs from that of all other organisms by the presence of peptidoglycan which is located immediately outside of the cell membrane. Peptidoglycan is made up of a polysaccharide backbone consisting of alternating N-Acetylmuramic acid (NAM) and N-acetylglucosamine (NAG) residues in equal amounts.
The glycocalyx (pl.: glycocalyces or glycocalyxes), also known as the pericellular matrix and cell coat, is a layer of glycoproteins and glycolipids which surround the cell membranes of bacteria, epithelial cells, and other cells. [1] Animal epithelial cells have a fuzz-like coating on the external surface of their plasma membranes.
The cell envelopes of the bacterial class of mollicutes do not have a cell wall. [5] The main pathogenic bacteria in this class are mycoplasma and ureaplasma. [5] L-form bacteria are strains bacteria that lack cell walls derived from bacteria that normally possess cell walls. [6]
Some bacteria have cell wall structures that are neither classically Gram-positive or Gram-negative. This includes clinically important bacteria such as mycobacteria which have a thick peptidoglycan cell wall like a Gram-positive bacterium, but also a second outer layer of lipids. [80]
The envelope is acquired by the capsid from an intracellular membrane in the virus' host; examples include the inner nuclear membrane, the Golgi membrane, and the cell's outer membrane. [7] Once the virus has infected a cell and begins replicating itself, new capsid subunits are synthesized using the protein biosynthesis mechanism of the cell ...
The cell wall is essential to the survival of many bacteria, although L-form bacteria can be produced in the laboratory that lack a cell wall. [38] The antibiotic penicillin is able to kill bacteria by preventing the cross-linking of peptidoglycan and this causes the cell wall to weaken and lyse. [ 37 ]
The release of the virions occurs after the breakage of the bacterial plasma membrane. Nonenveloped viruses lyse the host cell which is characterized by viral proteins attacking the peptidoglycan or membrane. The lysis of the bacteria occurs when the capsids inside the cell release the enzyme lysozyme which break down the cell wall.