When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Least common multiple - Wikipedia

    en.wikipedia.org/wiki/Least_common_multiple

    For example, 10 is a multiple of 5 because 5 × 2 = 10, so 10 is divisible by 5 and 2. Because 10 is the smallest positive integer that is divisible by both 5 and 2, it is the least common multiple of 5 and 2. By the same principle, 10 is the least common multiple of −5 and −2 as well.

  3. Lowest common factor - Wikipedia

    en.wikipedia.org/wiki/Lowest_common_factor

    Download as PDF; Printable version; In other projects Wikidata item; ... Greatest common divisor, also known as the greatest common factor; Least common multiple;

  4. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    gcd(a, b) is closely related to the least common multiple lcm(a, b): we have gcd(a, b)⋅lcm(a, b) = | a⋅b |. This formula is often used to compute least common multiples: one first computes the GCD with Euclid's algorithm and then divides the product of the given numbers by their GCD. The following versions of distributivity hold true:

  5. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    On the right Nicomachus's example with numbers 49 and 21 resulting in their GCD of 7 (derived from Heath 1908:300). In mathematics , the Euclidean algorithm , [ note 1 ] or Euclid's algorithm , is an efficient method for computing the greatest common divisor (GCD) of two integers , the largest number that divides them both without a remainder .

  6. Table of divisors - Wikipedia

    en.wikipedia.org/wiki/Table_of_divisors

    For example, 3 is a divisor of 21, since 21/7 = 3 (and therefore 7 is also a divisor of 21). If m is a divisor of n , then so is − m . The tables below only list positive divisors.

  7. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    lcm(m, n) (least common multiple of m and n) is the product of all prime factors of m or n (with the largest multiplicity for m or n). gcd(m, n) × lcm(m, n) = m × n. Finding the prime factors is often harder than computing gcd and lcm using other algorithms which do not require known prime factorization.

  8. Unique factorization domain - Wikipedia

    en.wikipedia.org/wiki/Unique_factorization_domain

    The question of when this happens is rather subtle: for example, for the localization of k[x, y, z]/(x 2 + y 3 + z 5) at the prime ideal (x, y, z), both the local ring and its completion are UFDs, but in the apparently similar example of the localization of k[x, y, z]/(x 2 + y 3 + z 7) at the prime ideal (x, y, z) the local ring is a UFD but ...

  9. Polynomial greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Polynomial_greatest_common...

    For example, the multiple roots of a polynomial are the roots of the GCD of the polynomial and its derivative, and further GCD computations allow computing the square-free factorization of the polynomial, which provides polynomials whose roots are the roots of a given multiplicity of the original polynomial.