When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression

    Proof without words of the arithmetic progression formulas using a rotated copy of the blocks. An arithmetic progression or arithmetic sequence is a sequence of numbers such that the difference from any succeeding term to its preceding term remains constant throughout the sequence. The constant difference is called common difference of that ...

  3. List of integer sequences - Wikipedia

    en.wikipedia.org/wiki/List_of_integer_sequences

    Name First elements Short description OEIS Kolakoski sequence: 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, ... The n th term describes the length of the n th run : A000002: Euler's ...

  4. Dirichlet's theorem on arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_theorem_on...

    Sequences dn + a with odd d are often ignored because half the numbers are even and the other half is the same numbers as a sequence with 2d, if we start with n = 0. For example, 6n + 1 produces the same primes as 3n + 1, while 6n + 5 produces the same as 3n + 2 except for the only even prime 2. The following table lists several arithmetic ...

  5. Integer sequence - Wikipedia

    en.wikipedia.org/wiki/Integer_sequence

    An integer sequence is computable if there exists an algorithm that, given n, calculates a n, for all n > 0. The set of computable integer sequences is countable.The set of all integer sequences is uncountable (with cardinality equal to that of the continuum), and so not all integer sequences are computable.

  6. Generalized arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Generalized_arithmetic...

    In mathematics, a generalized arithmetic progression (or multiple arithmetic progression) is a generalization of an arithmetic progression equipped with multiple common differences – whereas an arithmetic progression is generated by a single common difference, a generalized arithmetic progression can be generated by multiple common differences.

  7. Harmonic progression (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Harmonic_progression...

    In mathematics, a harmonic progression (or harmonic sequence) is a progression formed by taking the reciprocals of an arithmetic progression, which is also known as an arithmetic sequence. Equivalently, a sequence is a harmonic progression when each term is the harmonic mean of the neighboring terms.

  8. Arithmetico-geometric sequence - Wikipedia

    en.wikipedia.org/wiki/Arithmetico-geometric_sequence

    The elements of an arithmetico-geometric sequence () are the products of the elements of an arithmetic progression (in blue) with initial value and common difference , = + (), with the corresponding elements of a geometric progression (in green) with initial value and common ratio , =, so that [4]

  9. Complete sequence - Wikipedia

    en.wikipedia.org/wiki/Complete_sequence

    The complete sequences include: The sequence of the number 1 followed by the prime numbers (studied by S. S. Pillai [3] and others); this follows from Bertrand's postulate. [1] The sequence of practical numbers which has 1 as the first term and contains all other powers of 2 as a subset. [4] (sequence A005153 in the OEIS)