Search results
Results From The WOW.Com Content Network
But-2-ene is an acyclic alkene with four carbon atoms. It is the simplest alkene exhibiting cis/trans-isomerism (also known as (E/Z)-isomerism); that is, it exists as two geometric isomers cis-but-2-ene ((Z)-but-2-ene) and trans-but-2-ene ((E)-but-2-ene). It is a petrochemical, produced by the catalytic cracking of crude oil or the dimerization ...
This is a list of the various reported boiling points for the elements, with recommended values to be used elsewhere on Wikipedia. For broader coverage of this topic, see Boiling point . Boiling points, Master List format
Abundances of the elements (data page) — Earth's crust, sea water, Sun and Solar System; Abundance of elements in Earth's crust; Atomic radii of the elements (data page) — atomic radius (empirical), atomic radius (calculated), van der Waals radius, covalent radius; Boiling points of the elements (data page) — Boiling point
For example, of the isomers of butene, the two methyl groups of (Z)-but-2-ene (a.k.a. cis-2-butene) appear on the same side of the double bond, and in (E)-but-2-ene (a.k.a. trans-2-butene) the methyl groups appear on opposite sides. These two isomers of butene have distinct properties.
The cis isomer in this case has a boiling point of 60.3 °C, while the trans isomer has a boiling point of 47.5 °C. [6] In the cis isomer the two polar C–Cl bond dipole moments combine to give an overall molecular dipole, so that there are intermolecular dipole–dipole forces (or Keesom forces), which add to the London dispersion forces and ...
{{Periodic table (boiling point)|state=expanded}} or {{Periodic table (boiling point)|state=collapsed}}This template's initial visibility currently defaults to autocollapse, meaning that if there is another collapsible item on the page (a navbox, sidebar, or table with the collapsible attribute), it is hidden apart from its title bar; if not, it is fully visible.
Toggle the table of contents. ... Boiling point (°C) K b (°C⋅kg/mol) Freezing point (°C) ... [2] Acetone: 0.78 56.2 1.67 –94.8 K b [3] Benzene: 0.87
J.A. Dean (ed.), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.4, Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds