When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Orbital hybridisation - Wikipedia

    en.wikipedia.org/wiki/Orbital_hybridisation

    In chemistry, orbital hybridisation (or hybridization) is the concept of mixing atomic orbitals to form new hybrid orbitals (with different energies, shapes, etc., than the component atomic orbitals) suitable for the pairing of electrons to form chemical bonds in valence bond theory.

  3. Bent's rule - Wikipedia

    en.wikipedia.org/wiki/Bent's_rule

    [12] [27] Namely the atomic s and p orbital(s) are combined to give four sp i 3 = 1 ⁄ √ 4 (s + √ 3 p i) orbitals, three sp i 2 = 1 ⁄ √ 3 (s + √ 2 p i) orbitals, or two sp i = 1 ⁄ √ 2 (s + p i) orbitals. These combinations are chosen to satisfy two conditions. First, the total amount of s and p orbital contributions must be ...

  4. Isovalent hybridization - Wikipedia

    en.wikipedia.org/wiki/Isovalent_hybridization

    In chemistry, isovalent or second order hybridization is an extension of orbital hybridization, the mixing of atomic orbitals into hybrid orbitals which can form chemical bonds, to include fractional numbers of atomic orbitals of each type (s, p, d). It allows for a quantitative depiction of bond formation when the molecular geometry deviates ...

  5. Polyhedral skeletal electron pair theory - Wikipedia

    en.wikipedia.org/wiki/Polyhedral_skeletal...

    The other sp-hybrid radiates into the center of the structure forming a large bonding molecular orbital at the center of the cluster. The remaining two unhybridized orbitals lie along the tangent of the sphere like structure creating more bonding and antibonding orbitals between the boron vertices. [9] The orbital diagram breaks down as follows:

  6. List of character tables for chemically important 3D point ...

    en.wikipedia.org/wiki/List_of_character_tables...

    This lists the character tables for the more common molecular point groups used in the study of molecular symmetry.These tables are based on the group-theoretical treatment of the symmetry operations present in common molecules, and are useful in molecular spectroscopy and quantum chemistry.

  7. Carbon–carbon bond - Wikipedia

    en.wikipedia.org/wiki/Carbon–carbon_bond

    The carbon–carbon single bond is a sigma bond and is formed between one hybridized orbital from each of the carbon atoms. In ethane, the orbitals are sp 3-hybridized orbitals, but single bonds formed between carbon atoms with other hybridizations do occur (e.g. sp 2 to sp 2). In fact, the carbon atoms in the single bond need not be of the ...

  8. Dangling bond - Wikipedia

    en.wikipedia.org/wiki/Dangling_bond

    When a free radical exists in an immobilized environment (for example, a solid), it is referred to as an "immobilized free radical" or a "dangling bond". A dangling bond in (bulk) crystalline silicon is often pictured as a single unbound hybrid sp 3 orbital on the silicon atom, with the other three sp 3 orbitals facing away from the unbound ...

  9. Orbital overlap - Wikipedia

    en.wikipedia.org/wiki/Orbital_overlap

    In chemical bonds, an orbital overlap is the concentration of orbitals on adjacent atoms in the same regions of space. Orbital overlap can lead to bond formation. Linus Pauling explained the importance of orbital overlap in the molecular bond angles observed through experimentation; it is the basis for orbital hybridization.