Search results
Results From The WOW.Com Content Network
Charge number or valence [1] of an ion is the coefficient that, when multiplied by the elementary charge, gives the ion's charge. [2] For example, the charge on a chloride ion, , is , where e is the elementary charge. This means that the charge number for the ion is . is used as the symbol for the charge number.
Charge quantization is the principle that the charge of any object is an integer multiple of the elementary charge. Thus, an object's charge can be exactly 0 e, or exactly 1 e, −1 e, 2 e, etc., but not 1 / 2 e, or −3.8 e, etc. (There may be exceptions to this statement, depending on how "object" is defined; see below.)
All other isotopes have half-lives under 1 hour, many less than one second. The shortest-lived are proton-unbound 29 Cl and 30 Cl, with half-lives less than 10 picoseconds and 30 nanoseconds, respectively; the half-life of 28 Cl is unknown.
When charged particles move in electric and magnetic fields the following two laws apply: Lorentz force law: = (+),; Newton's second law of motion: = =; where F is the force applied to the ion, m is the mass of the particle, a is the acceleration, Q is the electric charge, E is the electric field, and v × B is the cross product of the ion's velocity and the magnetic flux density.
Pentamethylcyclopentadienyl rhodium dichloride dimer is an organometallic compound with the formula [(C 5 (CH 3) 5 RhCl 2)] 2, commonly abbreviated [Cp*RhCl 2] 2 This dark red air-stable diamagnetic solid is a reagent in organometallic chemistry.
The formal charge is a tool for estimating the distribution of electric charge within a molecule. [1] [2] The concept of oxidation states constitutes a competing method to assess the distribution of electrons in molecules. If the formal charges and oxidation states of the atoms in carbon dioxide are compared, the following values are arrived at:
Both have nuclear spin 3/2+ and thus may be used for nuclear magnetic resonance, although the spin magnitude being greater than 1/2 results in non-spherical nuclear charge distribution and thus resonance broadening as a result of a nonzero nuclear quadrupole moment and resultant quadrupolar relaxation.
The following is a detailed list of methods, partly based on Meister and Schwarz (1994). [11] Population analysis of wavefunctions. Mulliken population analysis; Löwdin population analysis [12] Coulson's charges; Natural charges [7] CM1, CM2, CM3, CM4, and CM5 [13] charge models; Partitioning of electron density distributions