Search results
Results From The WOW.Com Content Network
Line DE bisects line AB at D, line EF is a perpendicular bisector of segment AD at C, and line EF is the interior bisector of right angle AED. In geometry, bisection is the division of something into two equal or congruent parts (having the same shape and size). Usually it involves a bisecting line, also called a bisector.
The two bimedians of a convex quadrilateral are the line segments that connect the midpoints of opposite sides, hence each bisecting two sides. The two bimedians and the line segment joining the midpoints of the diagonals are concurrent at (all intersect at)a point called the "vertex centroid", which is the midpoint of all three of these segments.
This reduces to the previous version if AD is the bisector of ∠ BAC. When D is external to the segment BC, directed line segments and directed angles must be used in the calculation. The angle bisector theorem is commonly used when the angle bisectors and side lengths are known. It can be used in a calculation or in a proof.
Here, p is the (positive) length of the line segment perpendicular to the line and delimited by the origin and the line, and is the (oriented) angle from the x-axis to this segment. It may be useful to express the equation in terms of the angle α = φ + π / 2 {\displaystyle \alpha =\varphi +\pi /2} between the x -axis and the line.
The two bimedians of a quadrilateral (segments joining midpoints of opposite sides) and the line segment joining the midpoints of the diagonals are concurrent and are all bisected by their point of intersection. [3]: p.125 In a tangential quadrilateral, the four angle bisectors concur at the center of the incircle. [4]
The converse of the theorem is true as well. That is if a line is drawn through the midpoint of triangle side parallel to another triangle side then the line will bisect the third side of the triangle. The triangle formed by the three parallel lines through the three midpoints of sides of a triangle is called its medial triangle.
Perpendicular bisector construction can refer to: Bisection § Line segment bisector , on the construction of the perpendicular bisector of a line segment Perpendicular bisector construction of a quadrilateral , on the use of perpendicular bisectors of a quadrilateral's sides to form another quadrilateral
For one other site , the points that are closer to than to , or equally distant, form a closed half-space, whose boundary is the perpendicular bisector of line segment . Cell R k {\displaystyle R_{k}} is the intersection of all of these n − 1 {\displaystyle n-1} half-spaces, and hence it is a convex polygon . [ 6 ]