Ads
related to: tile pattern diagram
Search results
Results From The WOW.Com Content Network
The pattern represented by every finite patch of tiles in a Penrose tiling occurs infinitely many times throughout the tiling. They are quasicrystals: implemented as a physical structure a Penrose tiling will produce diffraction patterns with Bragg peaks and five-fold symmetry, revealing the repeated patterns and fixed orientations of its tiles ...
A Pythagorean tiling Street Musicians at the Door, Jacob Ochtervelt, 1665.As observed by Nelsen [1] the floor tiles in this painting are set in the Pythagorean tiling. A Pythagorean tiling or two squares tessellation is a tiling of a Euclidean plane by squares of two different sizes, in which each square touches four squares of the other size on its four sides.
There are different notations for expressing these uniform solutions, Wythoff symbol, Coxeter diagram, and Coxeter's t-notation. Simple tiles are generated by Möbius triangles with whole numbers p,q,r, while Schwarz triangles allow rational numbers p,q,r and allow star polygon faces, and have overlapping elements.
An example of such a tiling is shown in the adjacent diagram (see the image description for more information). A tiling that cannot be constructed from a single primitive cell is called nonperiodic. If a given set of tiles allows only nonperiodic tilings, then this set of tiles is called aperiodic . [ 3 ]
Star polygon tiles can be included. Apeirogons, {∞}, can be used as tiling faces. Zigzags (apeirogons alternating between two angles) can also be used. The restriction that tiles meet edge-to-edge can be relaxed, allowing additional tilings such as the Pythagorean tiling. Symmetry group triangles with retrogrades include:
Drawing the tiles colored as red on the original faces, yellow at the original vertices, and blue along the original edges, all 8 forms are distinct. However treating faces identically, there are only three topologically distinct forms: square tiling , truncated square tiling , snub square tiling .
A p4g pattern can be looked upon as a checkerboard pattern of copies of a square tile with 4-fold rotational symmetry, and its mirror image. Alternatively it can be looked upon (by shifting half a tile) as a checkerboard pattern of copies of a horizontally and vertically symmetric tile and its 90° rotated version.
Infinitely many different pentagons can form this pattern, belonging to two of the 15 families of convex pentagons that can tile the plane. Their tilings have varying symmetries; all are face-symmetric. One particular form of the tiling, dual to the snub square tiling, has tiles with the minimum possible perimeter among all pentagonal tilings ...