When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Linear motion - Wikipedia

    en.wikipedia.org/wiki/Linear_motion

    Under everyday circumstances, external forces such as gravity and friction can cause an object to change the direction of its motion, so that its motion cannot be described as linear. [3] One may compare linear motion to general motion. In general motion, a particle's position and velocity are described by vectors, which have a magnitude and ...

  3. Acceleration - Wikipedia

    en.wikipedia.org/wiki/Acceleration

    In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Acceleration is one of several components of kinematics, the study of motion. Accelerations are vector quantities (in that they have magnitude and direction).

  4. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2] The subject is based upon a three-dimensional Euclidean space with fixed axes, called a frame of ...

  5. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  6. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    [130]: 15 [131] Consequently, the Principia does not express acceleration as the second derivative of position, and so it does not give the second law as =. This form of the second law was written (for the special case of constant force) at least as early as 1716, by Jakob Hermann ; Leonhard Euler would employ it as a basic premise in the 1740s ...

  7. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  8. Acceleration (differential geometry) - Wikipedia

    en.wikipedia.org/wiki/Acceleration_(differential...

    The concept of acceleration is a covariant derivative concept. In other words, in order to define acceleration an additional structure on M {\displaystyle M} must be given. Using abstract index notation , the acceleration of a given curve with unit tangent vector ξ a {\displaystyle \xi ^{a}} is given by ξ b ∇ b ξ a {\displaystyle \xi ^{b ...

  9. Motion - Wikipedia

    en.wikipedia.org/wiki/Motion

    In physics, motion is when an object changes its position with respect to a reference point in a given time. Motion is mathematically described in terms of displacement , distance , velocity , acceleration , speed , and frame of reference to an observer, measuring the change in position of the body relative to that frame with a change in time.