Search results
Results From The WOW.Com Content Network
A chart or table of nuclides maps the nuclear, or radioactive, behavior of nuclides, as it distinguishes the isotopes of an element.It contrasts with a periodic table, which only maps their chemical behavior, since isotopes (nuclides that are variants of the same element) do not differ chemically to any significant degree, with the exception of hydrogen.
The first printed edition of the Karlsruhe Nuclide Chart of 1958 in the form of a wall chart was created by Walter Seelmann-Eggebert and his assistant Gerda Pfennig. Walter Seelmann-Eggebert was director of the Radiochemistry Institute in the 1956 founded "Kernreaktor Bau- und Betriebsgesellschaft mbH" in Karlsruhe, Germany (a predecessor institution of the later "(Kern-)Forschungszentrum ...
Interactive Chart of Nuclides (Brookhaven National Laboratory) The Lund/LBNL Nuclear Data Search; An isotope table with clickable information on every isotope and its decay routes is available at chemlab.pc.maricopa.edu; An example of free Universal Nuclide Chart with decay information for over 3000 nuclides is available at Nucleonica.net.
The column labeled "energy" denotes the energy equivalent of the mass of a neutron minus the mass per nucleon of this nuclide (so all nuclides get a positive value) in MeV, formally: m n − m nuclide / A, where A = Z + N is the mass number. Note that this means that a higher "energy" value actually means that the nuclide has a lower energy.
Interactive Chart of Nuclides (Brookhaven National Laboratory) The Lund/LBNL Nuclear Data Search; An isotope table with clickable information on every isotope and its decay routes is available at chemlab.pc.maricopa.edu; An example of free Universal Nuclide Chart with decay information for over 3000 nuclides is available at Nucleonica.net.
edit doc page This is a wikitable of the nuclides. The vertical axis is the number of protons. The horizontal axis can be either the number of neutrons or the number of neutrons minus the number of protons.
The nuclide concept (referring to individual nuclear species) emphasizes nuclear properties over chemical properties, while the isotope concept (grouping all atoms of each element) emphasizes chemical over nuclear. The neutron number has large effects on nuclear properties, but its effect on chemical reactions is negligible for most elements ...
This chart of nuclides used by the Japan Atomic Energy Agency shows known (boxed) and predicted decay modes of nuclei up to Z = 149 and N = 256. Regions of increased stability are visible around the predicted shell closures at N = 184 ( 294 Ds– 298 Fl) and N = 228 ( 354 126), separated by a gap of short-lived fissioning nuclei ( t 1/2 < 1 ns ...