When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Inverse hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Inverse_hyperbolic_functions

    The formula for the inverse hyperbolic cosine given in § Inverse hyperbolic cosine is not convenient, since similar to the principal values of the logarithm and the square root, the principal value of arcosh would not be defined for imaginary z. Thus the square root has to be factorized, leading to

  3. List of integrals of inverse hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    For each inverse hyperbolic integration formula below there is a corresponding formula in the list of integrals of inverse trigonometric functions. The ISO 80000-2 standard uses the prefix "ar-" rather than "arc-" for the inverse hyperbolic functions; we do that here.

  4. Hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_functions

    In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle.Just as the points (cos t, sin t) form a circle with a unit radius, the points (cosh t, sinh t) form the right half of the unit hyperbola.

  5. CORDIC - Wikipedia

    en.wikipedia.org/wiki/CORDIC

    CORDIC (coordinate rotation digital computer), Volder's algorithm, Digit-by-digit method, Circular CORDIC (Jack E. Volder), [1] [2] Linear CORDIC, Hyperbolic CORDIC (John Stephen Walther), [3] [4] and Generalized Hyperbolic CORDIC (GH CORDIC) (Yuanyong Luo et al.), [5] [6] is a simple and efficient algorithm to calculate trigonometric functions, hyperbolic functions, square roots ...

  6. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    2.3 Trigonometric, inverse trigonometric, hyperbolic, and inverse hyperbolic functions relationship 2.4 Modified-factorial denominators 2.5 Binomial coefficients

  7. Inverse trigonometric functions - Wikipedia

    en.wikipedia.org/.../Inverse_trigonometric_functions

    The signum function is also necessary due to the absolute values in the derivatives of the two functions, which create two different solutions for positive and negative values of x. These can be further simplified using the logarithmic definitions of the inverse hyperbolic functions:

  8. Lists of integrals - Wikipedia

    en.wikipedia.org/wiki/Lists_of_integrals

    If the function f does not have any continuous antiderivative which takes the value zero at the zeros of f (this is the case for the sine and the cosine functions), then sgn(f(x)) ∫ f(x) dx is an antiderivative of f on every interval on which f is not zero, but may be discontinuous at the points where f(x) = 0.

  9. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    Using the hyperbolic sine and cosine functions,, a parametric representation of the hyperbola = can be obtained, which is similar to the parametric representation of an ellipse: (⁡, ⁡), , which satisfies the Cartesian equation because ⁡ ⁡ =