Search results
Results From The WOW.Com Content Network
In the polynomial +, any rational root fully reduced should have a numerator that divides 1 and a denominator that divides 2. Hence the only possible rational roots are ±1/2 and ±1; since neither of these equates the polynomial to zero, it has no rational roots.
Rather, the degree of the zero polynomial is either left explicitly undefined, or defined as negative (either −1 or −∞). [10] The zero polynomial is also unique in that it is the only polynomial in one indeterminate that has an infinite number of roots. The graph of the zero polynomial, f(x) = 0, is the x-axis.
The obvious analogue of the Jacobian conjecture fails if k has characteristic p > 0 even for one variable. The characteristic of a field, if it is not zero, must be prime, so at least 2. The polynomial x − x p has derivative 1 − p x p−1 which is 1 (because px is 0) but it has no inverse function.
Every polynomial in one variable x with real coefficients can be uniquely written as the product of a constant, polynomials of the form x + a with a real, and polynomials of the form x 2 + ax + b with a and b real and a 2 − 4b < 0 (which is the same thing as saying that the polynomial x 2 + ax + b has no real roots).
The discriminant of a polynomial is a function of its coefficients that is zero if and only if the polynomial has a multiple root, or, if it is divisible by the square of a non-constant polynomial. In other words, the discriminant is nonzero if and only if the polynomial is square-free.
The previous example involved an indicial polynomial with a repeated root, which gives only one solution to the given differential equation. In general, the Frobenius method gives two independent solutions provided that the indicial equation's roots are not separated by an integer (including zero).
The resultant of two polynomials depending on a variable x and other variables is a polynomial in the other variables that is in the ideal generated by the two polynomials, and has the following properties: if one of the polynomials is monic in x, every zero (in the other variables) of the resultant may be extended into a common zero of the two ...
A root of a polynomial is a zero of the corresponding polynomial function. [1] The fundamental theorem of algebra shows that any non-zero polynomial has a number of roots at most equal to its degree , and that the number of roots and the degree are equal when one considers the complex roots (or more generally, the roots in an algebraically ...