Search results
Results From The WOW.Com Content Network
with a corresponding factor graph shown on the right. Observe that the factor graph has a cycle. If we merge (,) (,) into a single factor, the resulting factor graph will be a tree. This is an important distinction, as message passing algorithms are usually exact for trees, but only approximate for graphs with cycles.
Once a continuous increasing (in x) definition of tetration, x a, is selected, the corresponding super-logarithm or is defined for all real numbers x, and a > 1. The function slog a x satisfies:
In the mathematical discipline of graph theory, the 2-factor theorem, discovered by Julius Petersen, is one of the earliest works in graph theory. It can be stated as follows: [ 1 ] Let G {\displaystyle G} be a regular graph whose degree is an even number, 2 k {\displaystyle 2k} .
The polynomial x 2 + cx + d, where a + b = c and ab = d, can be factorized into (x + a)(x + b).. In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind.
In mathematics, certain kinds of mistaken proof are often exhibited, and sometimes collected, as illustrations of a concept called mathematical fallacy.There is a distinction between a simple mistake and a mathematical fallacy in a proof, in that a mistake in a proof leads to an invalid proof while in the best-known examples of mathematical fallacies there is some element of concealment or ...
An illustration of the Freshman's dream in two dimensions. Each side of the square is X+Y in length. The area of the square is the sum of the area of the yellow region (=X 2), the area of the green region (=Y 2), and the area of the two white regions (=2×X×Y).
In graph theory, a factor of a graph G is a spanning subgraph, i.e., a subgraph that has the same vertex set as G. A k-factor of a graph is a spanning k-regular subgraph, and a k-factorization partitions the edges of the graph into disjoint k-factors. A graph G is said to be k-factorable if it admits a k-factorization.
The algorithm is used to factorize a number =, where is a non-trivial factor. A polynomial modulo , called () (e.g., () = (+)), is used to generate a pseudorandom sequence.It is important to note that () must be a polynomial.