When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/.../Jacobian_matrix_and_determinant

    Furthermore, if the Jacobian determinant at p is positive, then f preserves orientation near p; if it is negative, f reverses orientation. The absolute value of the Jacobian determinant at p gives us the factor by which the function f expands or shrinks volumes near p; this is why it occurs in the general substitution rule. The Jacobian ...

  3. Jacobi's formula - Wikipedia

    en.wikipedia.org/wiki/Jacobi's_formula

    In matrix calculus, Jacobi's formula expresses the derivative of the determinant of a matrix A in terms of the adjugate of A and the derivative of A. [1]If A is a differentiable map from the real numbers to n × n matrices, then

  4. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    The Jacobian at a point gives the best linear approximation of the distorted parallelogram near that point (right, in translucent white), and the Jacobian determinant gives the ratio of the area of the approximating parallelogram to that of the original square.

  5. Jacobi matrix - Wikipedia

    en.wikipedia.org/wiki/Jacobi_matrix

    Jacobian matrix and determinant of a smooth map between Euclidean spaces or smooth manifolds; Jacobi operator (Jacobi matrix), a tridiagonal symmetric matrix appearing in the theory of orthogonal polynomials

  6. Jacobi coordinates - Wikipedia

    en.wikipedia.org/wiki/Jacobi_coordinates

    The position coordinates x j and x k are replaced by their relative position r jk = x j − x k and by the vector to their center of mass R jk = (m j q j + m k q k)/(m j + m k). The node in the binary tree corresponding to the virtual body has m j as its right child and m k as its left child. The order of children indicates the relative ...

  7. Second partial derivative test - Wikipedia

    en.wikipedia.org/wiki/Second_partial_derivative_test

    For functions of three or more variables, the determinant of the Hessian does not provide enough information to classify the critical point, because the number of jointly sufficient second-order conditions is equal to the number of variables, and the sign condition on the determinant of the Hessian is only one of the conditions.

  8. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    The sum of the entries along the main diagonal (the trace), plus one, equals 44(x 2 + y 2 + z 2), which is 4w 2. Thus we can write the trace itself as 2 w 2 + 2 w 2 − 1 ; and from the previous version of the matrix we see that the diagonal entries themselves have the same form: 2 x 2 + 2 w 2 − 1 , 2 y 2 + 2 w 2 − 1 , and 2 z 2 + 2 w ...

  9. Symplectic matrix - Wikipedia

    en.wikipedia.org/wiki/Symplectic_matrix

    In this case, the determinant may not be 1, but will have absolute value 1. In the 2×2 case ( n =1), M will be the product of a real symplectic matrix and a complex number of absolute value 1. Other authors [ 9 ] retain the definition ( 1 ) for complex matrices and call matrices satisfying ( 3 ) conjugate symplectic .