Search results
Results From The WOW.Com Content Network
Inertia is the natural tendency of objects in motion to stay in motion and objects at rest to stay at rest, unless a force causes the velocity to change. It is one of the fundamental principles in classical physics , and described by Isaac Newton in his first law of motion (also known as The Principle of Inertia). [ 1 ]
For example, consider a book at rest on a table. The Earth's gravity pulls down upon the book. The "reaction" to that "action" is not the support force from the table holding up the book, but the gravitational pull of the book acting on the Earth. [note 6] Newton's third law relates to a more fundamental principle, the conservation of momentum.
Examples of fictitious forces are the centrifugal force and the Coriolis force in rotating reference frames. To apply the Newtonian definition of an inertial frame, the understanding of separation between "fictitious" forces and "real" forces must be made clear. For example, consider a stationary object in an inertial frame.
A body at rest will remain at rest, and a body in motion will remain in motion unless it is acted upon by an external force. (This is known as the law of inertia .) Force ( F → {\displaystyle {\vec {F}}} ) is equal to the change in momentum per change in time ( Δ m v → Δ t {\displaystyle {\frac {\Delta m{\vec {v}}}{\Delta t}}} ).
For example, an analysis of the motion of an object in an airliner in flight could be made relative to the airliner, to the surface of the Earth, or even to the Sun. [12] A reference frame that is at rest (or one that moves with no rotation and at constant velocity) relative to the "fixed stars" is generally taken to be an inertial frame. Any ...
The moments of inertia of a mass have units of dimension ML 2 ([mass] × [length] 2). It should not be confused with the second moment of area, which has units of dimension L 4 ([length] 4) and is used in beam calculations. The mass moment of inertia is often also known as the rotational inertia, and sometimes as the angular mass.
It is the inertia of a rotating body with respect to its rotation. The moment of inertia plays much the same role in rotational dynamics as mass does in linear dynamics, describing the relationship between angular momentum and angular velocity, torque and angular acceleration, and several other quantities.
Mass–energy equivalence states that all objects having mass, or massive objects, have a corresponding intrinsic energy, even when they are stationary.In the rest frame of an object, where by definition it is motionless and so has no momentum, the mass and energy are equal or they differ only by a constant factor, the speed of light squared (c 2).