Search results
Results From The WOW.Com Content Network
This is a list of statistical procedures which can be used for the analysis of categorical data, also known as data on the nominal scale and as categorical variables.
A pie chart showing the composition of the 38th Parliament of Canada. A chart (sometimes known as a graph) is a graphical representation for data visualization, in which "the data is represented by symbols, such as bars in a bar chart, lines in a line chart, or slices in a pie chart". [1]
Pie chart of populations of English native speakers. A pie chart (or a circle chart) is a circular statistical graphic which is divided into slices to illustrate numerical proportion. In a pie chart, the arc length of each slice (and consequently its central angle and area) is proportional to the quantity it represents.
Data presentation architecture weds the science of numbers, data and statistics in discovering valuable information from data and making it usable, relevant and actionable with the arts of data visualization, communications, organizational psychology and change management in order to provide business intelligence solutions with the data scope ...
If a chart plots 10 colors or fewer, then by default it uses every other one: The colors can be manually set in a graph by adding them to the 'colors' parameter. For example, for two pie charts, the first of which is default and the second of which omits some colors in the first, you would manually enter your selections from the default 20:
A large number of algorithms for classification can be phrased in terms of a linear function that assigns a score to each possible category k by combining the feature vector of an instance with a vector of weights, using a dot product. The predicted category is the one with the highest score.
They can also provide insight into a data set to help with testing assumptions, model selection and regression model validation, estimator selection, relationship identification, factor effect determination, and outlier detection. In addition, the choice of appropriate statistical graphics can provide a convincing means of communicating the ...
Data mining is a particular data analysis technique that focuses on statistical modeling and knowledge discovery for predictive rather than purely descriptive purposes, while business intelligence covers data analysis that relies heavily on aggregation, focusing mainly on business information. [4]