Ad
related to: csc graph vertices formula sheet calculator with steps printable
Search results
Results From The WOW.Com Content Network
The primitive graph operations that the algorithm uses are to enumerate the vertices of the graph, to store data per vertex (if not in the graph data structure itself, then in some table that can use vertices as indices), to enumerate the out-neighbours of a vertex (traverse edges in the forward direction), and to enumerate the in-neighbours of a vertex (traverse edges in the backward ...
The two edges along the cycle adjacent to any of the vertices are not written down. Let v be the vertices of the graph and describe the Hamiltonian circle along the p vertices by the edge sequence v 0 v 1, v 1 v 2, ...,v p−2 v p−1, v p−1 v 0. Halting at a vertex v i, there is one unique vertex v j at a distance d i joined by a chord with v i,
The complete graph on n vertices is denoted by K n.Some sources claim that the letter K in this notation stands for the German word komplett, [4] but the German name for a complete graph, vollständiger Graph, does not contain the letter K, and other sources state that the notation honors the contributions of Kazimierz Kuratowski to graph theory.
According to Brooks' theorem every connected cubic graph other than the complete graph K 4 has a vertex coloring with at most three colors. Therefore, every connected cubic graph other than K 4 has an independent set of at least n/3 vertices, where n is the number of vertices in the graph: for instance, the largest color class in a 3-coloring has at least this many vertices.
In an undirected graph, reachability between all pairs of vertices can be determined by identifying the connected components of the graph. Any pair of vertices in such a graph can reach each other if and only if they belong to the same connected component; therefore, in such a graph, reachability is symmetric (reaches iff reaches ). The ...
These are the three vertices A such that d(A, B) ≤ 3 for all vertices B. Each black vertex is a distance of at least 4 from some other vertex. The center (or Jordan center [1]) of a graph is the set of all vertices of minimum eccentricity, [2] that is, the set of all vertices u where the greatest distance d(u,v) to other vertices v is
Mycielskian construction applied to a 5-cycle graph, producing the Grötzsch graph with 11 vertices and 20 edges, the smallest triangle-free 4-chromatic graph (Chvátal 1974). Let the n vertices of the given graph G be v 1, v 2, . . . , v n. The Mycielski graph μ(G) contains G itself as a subgraph, together with n+1 additional vertices: a ...
Differential equations or difference equations on such graphs can be employed to leverage the graph's structure for tasks such as image segmentation (where the vertices represent pixels and the weighted edges encode pixel similarity based on comparisons of Moore neighborhoods or larger windows), data clustering, data classification, or ...