Search results
Results From The WOW.Com Content Network
A k-factor of a graph is a spanning k-regular subgraph, and a k-factorization partitions the edges of the graph into disjoint k-factors. A graph G is said to be k-factorable if it admits a k-factorization. In particular, a 1-factor is a perfect matching, and a 1-factorization of a k-regular graph is a proper edge coloring with k colors.
Creating the one point or two points in the intersection of a line and a circle (if they intersect) Creating the one point or two points in the intersection of two circles (if they intersect). For example, starting with just two distinct points, we can create a line or either of two circles (in turn, using each point as centre and passing ...
Lines A, B and C are concurrent in Y. In geometry, lines in a plane or higher-dimensional space are concurrent if they intersect at a single point.. The set of all lines through a point is called a pencil, and their common intersection is called the vertex of the pencil.
In three or more dimensions, even two lines almost certainly do not intersect; pairs of non-parallel lines that do not intersect are called skew lines. But if an intersection does exist it can be found, as follows. In three dimensions a line is represented by the intersection of two planes, each of which has an equation of the form
In elliptic geometry, two lines perpendicular to a given line must intersect. In fact, all perpendiculars to a given line intersect at a single point called the absolute pole of that line. Every point corresponds to an absolute polar line of which it is the absolute pole. Any point on this polar line forms an absolute conjugate pair with the
There are three cases: a and a' intersect at a point O, a and a' are parallel to each other, and a and a' are ultraparallel to each other. [3] Case 1: a and a' intersect at a point O, Bisect one of the angles made by these two lines and name the angle bisector b. Using a hyperbolic ruler, construct a line c such that c is perpendicular to b and ...
However, parallel (non-crossing) pairs of lines are less restricted in hyperbolic line arrangements than in the Euclidean plane: in particular, the relation of being parallel is an equivalence relation for Euclidean lines but not for hyperbolic lines. [51] The intersection graph of the lines in a hyperbolic arrangement can be an arbitrary ...
The drawing on the upper right shows a moiré pattern. The lines could represent fibers in moiré silk, or lines drawn on paper or on a computer screen. The nonlinear interaction of the optical patterns of lines creates a real and visible pattern of roughly parallel dark and light bands, the moiré pattern, superimposed on the lines. [4]