When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Knowledge graph embedding - Wikipedia

    en.wikipedia.org/wiki/Knowledge_graph_embedding

    The use of deep learning for knowledge graph embedding has shown good predictive performance even if they are more expensive in the training phase, data-hungry, and often required a pre-trained embedding representation of knowledge graph coming from a different embedding model. [1] [5]

  3. Word2vec - Wikipedia

    en.wikipedia.org/wiki/Word2vec

    However, with a small training corpus, LSA showed better performance. Additionally they show that the best parameter setting depends on the task and the training corpus. Nevertheless, for skip-gram models trained in medium size corpora, with 50 dimensions, a window size of 15 and 10 negative samples seems to be a good parameter setting.

  4. Word embedding - Wikipedia

    en.wikipedia.org/wiki/Word_embedding

    In natural language processing, a word embedding is a representation of a word. The embedding is used in text analysis.Typically, the representation is a real-valued vector that encodes the meaning of the word in such a way that the words that are closer in the vector space are expected to be similar in meaning. [1]

  5. Sentence embedding - Wikipedia

    en.wikipedia.org/wiki/Sentence_embedding

    In practice however, BERT's sentence embedding with the [CLS] token achieves poor performance, often worse than simply averaging non-contextual word embeddings. SBERT later achieved superior sentence embedding performance [8] by fine tuning BERT's [CLS] token embeddings through the usage of a siamese neural network architecture on the SNLI dataset.

  6. ELMo - Wikipedia

    en.wikipedia.org/wiki/ELMo

    ELMo (embeddings from language model) is a word embedding method for representing a sequence of words as a corresponding sequence of vectors. [1] It was created by researchers at the Allen Institute for Artificial Intelligence , [ 2 ] and University of Washington and first released in February, 2018.

  7. Latent space - Wikipedia

    en.wikipedia.org/wiki/Latent_space

    These models learn the embeddings by leveraging statistical techniques and machine learning algorithms. Here are some commonly used embedding models: Word2Vec: [4] Word2Vec is a popular embedding model used in natural language processing (NLP). It learns word embeddings by training a neural network on a large corpus of text.

  8. Hugging Face - Wikipedia

    en.wikipedia.org/wiki/Hugging_Face

    models, also with Git-based version control; datasets, mainly in text, images, and audio; web applications ("spaces" and "widgets"), intended for small-scale demos of machine learning applications. There are numerous pre-trained models that support common tasks in different modalities, such as:

  9. Multimodal learning - Wikipedia

    en.wikipedia.org/wiki/Multimodal_learning

    Multimodal learning is a type of deep learning that integrates and processes multiple types of data, referred to as modalities, such as text, audio, images, or video.This integration allows for a more holistic understanding of complex data, improving model performance in tasks like visual question answering, cross-modal retrieval, [1] text-to-image generation, [2] aesthetic ranking, [3] and ...