When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Perceptron - Wikipedia

    en.wikipedia.org/wiki/Perceptron

    The pocket algorithm with ratchet (Gallant, 1990) solves the stability problem of perceptron learning by keeping the best solution seen so far "in its pocket". The pocket algorithm then returns the solution in the pocket, rather than the last solution.

  3. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    Machine learning and data mining often employ the same methods and overlap significantly, but while machine learning focuses on prediction, based on known properties learned from the training data, data mining focuses on the discovery of (previously) unknown properties in the data (this is the analysis step of knowledge discovery in databases).

  4. Oversampling and undersampling in data analysis - Wikipedia

    en.wikipedia.org/wiki/Oversampling_and_under...

    These terms are used both in statistical sampling, survey design methodology and in machine learning. Oversampling and undersampling are opposite and roughly equivalent techniques. There are also more complex oversampling techniques, including the creation of artificial data points with algorithms like Synthetic minority oversampling technique ...

  5. Probably approximately correct learning - Wikipedia

    en.wikipedia.org/wiki/Probably_approximately...

    In computational learning theory, probably approximately correct (PAC) learning is a framework for mathematical analysis of machine learning. It was proposed in 1984 by Leslie Valiant . [ 1 ]

  6. Double Ratchet Algorithm - Wikipedia

    en.wikipedia.org/wiki/Double_Ratchet_Algorithm

    The first "ratchet" is applied to the symmetric root key, the second ratchet to the asymmetric Diffie Hellman (DH) key. [1] In cryptography, the Double Ratchet Algorithm (previously referred to as the Axolotl Ratchet [2] [3]) is a key management algorithm that was developed by Trevor Perrin and Moxie Marlinspike in 2013.

  7. List of terms relating to algorithms and data structures

    en.wikipedia.org/wiki/List_of_terms_relating_to...

    The NIST Dictionary of Algorithms and Data Structures [1] is a reference work maintained by the U.S. National Institute of Standards and Technology. It defines a large number of terms relating to algorithms and data structures. For algorithms and data structures not necessarily mentioned here, see list of algorithms and list of data structures.

  8. Empirical risk minimization - Wikipedia

    en.wikipedia.org/wiki/Empirical_risk_minimization

    In general, the risk () cannot be computed because the distribution (,) is unknown to the learning algorithm. However, given a sample of iid training data points, we can compute an estimate, called the empirical risk, by computing the average of the loss function over the training set; more formally, computing the expectation with respect to the empirical measure:

  9. Mathematics of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_artificial...

    The learning rate is the ratio (percentage) that influences the speed and quality of learning. The greater the ratio, the faster the neuron trains, but the lower the ratio, the more accurate the training.