Search results
Results From The WOW.Com Content Network
Diamagnetism is a property of all materials, and always makes a weak contribution to the material's response to a magnetic field. However, other forms of magnetism (such as ferromagnetism or paramagnetism ) are so much stronger such that, when different forms of magnetism are present in a material, the diamagnetic contribution is usually ...
This means that the effects are additive, and a table of "diamagnetic contributions", or Pascal's constants, can be put together. [6] [7] [8] With paramagnetic compounds the observed susceptibility can be adjusted by adding to it the so-called diamagnetic correction, which is the diamagnetic susceptibility calculated with the values from the ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
Landau quantization contributes towards magnetic susceptibility of metals, known as Landau diamagnetism. Under strong magnetic fields, Landau quantization leads to oscillations in electronic properties of materials as a function of the applied magnetic field known as the De Haas–Van Alphen and Shubnikov–de Haas effects.
When the coercivity of the material parallel to an applied field is the smaller of the two, the differential susceptibility is a function of the applied field and self interactions, such as the magnetic anisotropy. When the material is not saturated, the effect will be nonlinear and dependent upon the domain wall configuration of the material.
Such ordering can be studied by observing the magnetic susceptibility as a function of temperature and/or the size of the applied magnetic field, but a truly three-dimensional picture of the arrangement of the spins is best obtained by means of neutron diffraction. [1] [2] Neutrons are primarily scattered by the nuclei of the atoms in the ...
Eddy currents are minimized in these devices by selecting magnetic core materials that have low electrical conductivity (e.g., ferrites or iron powder mixed with resin) or by using thin sheets of magnetic material, known as laminations. Electrons cannot cross the insulating gap between the laminations and so are unable to circulate on wide arcs.
The term magnetism describes how materials respond on the microscopic level to an applied magnetic field and is used to categorize the magnetic phase of a material. Materials are divided into groups based upon their magnetic behavior: Diamagnetic materials [29] produce a magnetization that opposes the magnetic field.