When.com Web Search

  1. Ads

    related to: hamiltonian cycle diagram generator

Search results

  1. Results From The WOW.Com Content Network
  2. Hamiltonian path - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_path

    A Hamiltonian cycle, Hamiltonian circuit, vertex tour or graph cycle is a cycle that visits each vertex exactly once. A graph that contains a Hamiltonian cycle is called a Hamiltonian graph . Similar notions may be defined for directed graphs , where each edge (arc) of a path or cycle can only be traced in a single direction (i.e., the vertices ...

  3. Hamiltonian path problem - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_path_problem

    The problem of finding a Hamiltonian cycle or path is in FNP; the analogous decision problem is to test whether a Hamiltonian cycle or path exists. The directed and undirected Hamiltonian cycle problems were two of Karp's 21 NP-complete problems. They remain NP-complete even for special kinds of graphs, such as: bipartite graphs, [12]

  4. Hypercube graph - Wikipedia

    en.wikipedia.org/wiki/Hypercube_graph

    A Hamiltonian cycle on a tesseract with vertices labelled with a 4-bit cyclic Gray code. Every hypercube Q n with n > 1 has a Hamiltonian cycle, a cycle that visits each vertex exactly once. Additionally, a Hamiltonian path exists between two vertices u and v if and only if they have different colors in a 2-coloring of the graph.

  5. Steinhaus–Johnson–Trotter algorithm - Wikipedia

    en.wikipedia.org/wiki/Steinhaus–Johnson...

    The Hamiltonian cycle in the Cayley graph of the symmetric group generated by the Steinhaus–Johnson–Trotter algorithm Wheel diagram of all permutations of length = generated by the Steinhaus-Johnson-Trotter algorithm, where each permutation is color-coded (1=blue, 2=green, 3=yellow, 4=red).

  6. Ore's theorem - Wikipedia

    en.wikipedia.org/wiki/Ore's_theorem

    Illustration for the proof of Ore's theorem. In a graph with the Hamiltonian path v 1...v n but no Hamiltonian cycle, at most one of the two edges v 1 v i and v i − 1 v n (shown as blue dashed curves) can exist. For, if they both exist, then adding them to the path and removing the (red) edge v i − 1 v i would produce a Hamiltonian cycle.

  7. Grinberg's theorem - Wikipedia

    en.wikipedia.org/wiki/Grinberg's_theorem

    A graph that can be proven non-Hamiltonian using Grinberg's theorem. In graph theory, Grinberg's theorem is a necessary condition for a planar graph to contain a Hamiltonian cycle, based on the lengths of its face cycles. If a graph does not meet this condition, it is not Hamiltonian.

  8. Wheel graph - Wikipedia

    en.wikipedia.org/wiki/Wheel_graph

    There is always a Hamiltonian cycle in the wheel graph and there are + cycles in W n (sequence A002061 in the OEIS). The 7 cycles of the wheel graph W 4 . For odd values of n , W n is a perfect graph with chromatic number 3: the vertices of the cycle can be given two colors, and the center vertex given a third color.

  9. de Bruijn sequence - Wikipedia

    en.wikipedia.org/wiki/De_Bruijn_sequence

    Every three-digit sequence occurs exactly once if one visits every vertex exactly once (a Hamiltonian path). The de Bruijn sequences can be constructed by taking a Hamiltonian path of an n-dimensional de Bruijn graph over k symbols (or equivalently, an Eulerian cycle of an (n − 1)-dimensional de Bruijn graph). [5]

  1. Ads

    related to: hamiltonian cycle diagram generator