Search results
Results From The WOW.Com Content Network
The logarithmic derivative is then / and one can draw the general conclusion that for f meromorphic, the singularities of the logarithmic derivative of f are all simple poles, with residue n from a zero of order n, residue −n from a pole of order n. See argument principle. This information is often exploited in contour integration.
Logarithmic differentiation relies on the chain rule as well as properties of logarithms (in particular, the natural logarithm, or the logarithm to the base e) to transform products into sums and divisions into subtractions.
The logarithmic derivative is another way of stating the rule for differentiating the logarithm of a function (using the chain rule): () ′ = ′, wherever is positive. Logarithmic differentiation is a technique which uses logarithms and its differentiation rules to simplify certain expressions before actually applying the derivative.
The multiple valued version of log(z) is a set, but it is easier to write it without braces and using it in formulas follows obvious rules. log(z) is the set of complex numbers v which satisfy e v = z; arg(z) is the set of possible values of the arg function applied to z. When k is any integer:
Using that the logarithm of a product is the sum of the logarithms of the factors, the sum rule for derivatives gives immediately = = (). The last above expression of the derivative of a product is obtained by multiplying both members of this equation by the product of the f i . {\displaystyle f_{i}.}
The power rule for differentiation was derived by Isaac Newton and Gottfried Wilhelm Leibniz, each independently, for rational power functions in the mid 17th century, who both then used it to derive the power rule for integrals as the inverse operation. This mirrors the conventional way the related theorems are presented in modern basic ...
Moreover, as the derivative of f(x) evaluates to ln(b) b x by the properties of the exponential function, the chain rule implies that the derivative of log b x is given by [35] [37] = . That is, the slope of the tangent touching the graph of the base- b logarithm at the point ( x , log b ( x )) equals 1/( x ln( b )) .
Another method of deriving vector and tensor derivative identities is to replace all occurrences of a vector in an algebraic identity by the del operator, provided that no variable occurs both inside and outside the scope of an operator or both inside the scope of one operator in a term and outside the scope of another operator in the same term ...