Search results
Results From The WOW.Com Content Network
In coordination chemistry, the ligand cone angle (θ) is a measure of the steric bulk of a ligand in a transition metal coordination complex. It is defined as the solid angle formed with the metal at the vertex of a cone and the outermost edge of the van der Waals spheres of the ligand atoms at the perimeter of the base of the cone.
The natural bite angle (β n) of diphosphines, obtained using molecular mechanics calculations, is defined as the preferred chelation angle determined only by ligand backbone and not by metal valence angles (Figure 3). [1] Figure 3. Bite angle of a diphosphine ligand bound to rhodium.
The bond order of the metal ligand bond can be in part distinguished through the metal ligand bond angle (M−X−R). This bond angle is often referred to as being linear or bent with further discussion concerning the degree to which the angle is bent. For example, an imido ligand in the ionic form has three lone pairs.
The bite angle of the diphosphine influences the reactivity of the metal center. [9] Some examples of non-chelating diphosphine also exist. Due to steric effect, these phosphorus atoms can not react with anything except a proton. [10] It can be changed from non-chelating to chelating diphosphine by tuning the length of the linking arm. [11]
The user may choose to replace the inclination angle by its complement, the elevation angle (or altitude angle), measured upward between the reference plane and the radial line—i.e., from the reference plane upward (towards to the positive z-axis) to the radial line. The depression angle is the negative of the elevation angle.
It is used as a bidentate diphosphine ligand and is noteworthy for having a particularly wide bite angle (108°). [1] Such ligands are useful in the hydroformylation of alkenes. [2] Illustrative of its wide bite angle, it forms both cis and trans adducts of platinum(II) chloride. In the latter context, xantphos is classified as a trans-spanning ...
The angle between the two Cp rings is fixed. Rotation of the rings about the metal-centroid axis is stopped as well. A related class of derivatives give rise to the constrained geometry complexes. In these cases, a Cp ligand as linked to a non-Cp ligand. Such complexes have been commercialized for the production of polypropylene.
Geodetic latitude and geocentric latitude have different definitions. Geodetic latitude is defined as the angle between the equatorial plane and the surface normal at a point on the ellipsoid, whereas geocentric latitude is defined as the angle between the equatorial plane and a radial line connecting the centre of the ellipsoid to a point on the surface (see figure).