When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Independence (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Independence_(probability...

    Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.

  3. Misconceptions about the normal distribution - Wikipedia

    en.wikipedia.org/wiki/Misconceptions_about_the...

    Then the random variables and are uncorrelated, and each of them is normally distributed (with mean 0 and variance 1), but they are not independent. [ 7 ] : 93 It is well-known that the ratio C {\displaystyle C} of two independent standard normal random deviates X i {\displaystyle X_{i}} and Y i {\displaystyle Y_{i}} has a Cauchy distribution .

  4. Independent and identically distributed random variables

    en.wikipedia.org/wiki/Independent_and...

    Independent: Each outcome of the die roll will not affect the next one, which means the 10 variables are independent from each other. Identically distributed: Regardless of whether the die is fair or weighted, each roll will have the same probability of seeing each result as every other roll. In contrast, rolling 10 different dice, some of ...

  5. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    If , are two independent normal deviates with mean ⁠ ⁠ and variance , and ⁠ ⁠, ⁠ ⁠ are arbitrary real numbers, then the variable = + (+) + + is also normally distributed with mean ⁠ ⁠ and variance .

  6. Distribution of the product of two random variables - Wikipedia

    en.wikipedia.org/wiki/Distribution_of_the...

    A product distribution is a probability distribution constructed as the distribution of the product of random variables having two other known distributions. Given two statistically independent random variables X and Y, the distribution of the random variable Z that is formed as the product = is a product distribution.

  7. Conditional independence - Wikipedia

    en.wikipedia.org/wiki/Conditional_independence

    Two random variables and are conditionally independent given a random variable if they are independent given σ(W): the σ-algebra generated by . This is commonly written: This is commonly written: X ⊥ ⊥ Y ∣ W {\displaystyle X\perp \!\!\!\perp Y\mid W} or

  8. Sum of normally distributed random variables - Wikipedia

    en.wikipedia.org/wiki/Sum_of_normally...

    This means that the sum of two independent normally distributed random variables is normal, with its mean being the sum of the two means, and its variance being the sum of the two variances (i.e., the square of the standard deviation is the sum of the squares of the standard deviations). [1]

  9. Uncorrelatedness (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Uncorrelatedness...

    Further, two jointly normally distributed random variables are independent if they are uncorrelated, [4] although this does not hold for variables whose marginal distributions are normal and uncorrelated but whose joint distribution is not joint normal (see Normally distributed and uncorrelated does not imply independent).