Search results
Results From The WOW.Com Content Network
In the case of the gravitational field g, which can be shown to be conservative, [3] it is equal to the gradient in gravitational potential Φ: =. There are opposite signs between gravitational field and potential, because the potential gradient and field are opposite in direction: as the potential increases, the gravitational field strength decreases and vice versa.
The gradient of a function is called a gradient field. A (continuous) gradient field is always a conservative vector field: its line integral along any path depends only on the endpoints of the path, and can be evaluated by the gradient theorem (the fundamental theorem of calculus for line integrals). Conversely, a (continuous) conservative ...
Homogeneous regions have spatial gradient vector norm equal to zero. When evaluated over vertical position (altitude or depth), it is called vertical derivative or vertical gradient; the remainder is called horizontal gradient component, the vector projection of the full gradient onto the horizontal plane. Examples: Biology
Species richness, or biodiversity, increases from the poles to the tropics for a wide variety of terrestrial and marine organisms, often referred to as the latitudinal diversity gradient. [1] The latitudinal diversity gradient is one of the most widely recognized patterns in ecology. [1] It has been observed to varying degrees in Earth's past. [2]
Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...
In Cartesian coordinates, the divergence of a continuously differentiable vector field = + + is the scalar-valued function: = = (, , ) (, , ) = + +.. As the name implies, the divergence is a (local) measure of the degree to which vectors in the field diverge.
The gradient theorem states that if the vector field F is the gradient of some scalar-valued function (i.e., if F is conservative), then F is a path-independent vector field (i.e., the integral of F over some piecewise-differentiable curve is dependent only on end points). This theorem has a powerful converse:
These gradients are critical for cellular identity and cell relocation. Similarly, the gradients produced by cells may influence cellular fate by their temporal and spatial characteristics. In certain organisms, the choice of cell fate can be determined by a gradient, a binary choice, or through a relay of molecules released by a cell. [1]